Cybernetics and Systems Analysis

, Volume 50, Issue 5, pp 718–723 | Cite as

Data Multiplexing Methods

  • A. N. Voronin


The methods of data multiplexing are considered. For a limited number of channels, they allow obtaining the maximum possible amount of available information. Along with reducers of degrees of freedom, discriminators of degrees of freedom are proposed to be used, which enables all the channels, in accordance with their current informativeness, to participate in cooperative decision making.


synergetics data transmission channels degrees of freedom reducer discriminator mathematical statistics Bayesian approach small sample 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Voronin and Yu. K. Ziatdinov, Theory and Practice of Multicriteria Solutions: Models, Methods, Implementation [in Russian], Lambert Acad. Publ., Saarbrucken (2013).Google Scholar
  2. 2.
    A. N. Voronin, Signal multiplexing method for bistatic radar-location of small celestial bodies, in: Abstracts of Papers Read at the 9th Intern. Conf. Systems analysis and control, Izd. MAI, Moscow (2004), pp. 113–114.Google Scholar
  3. 3.
    D. V. Gaskarov and V. I. Shapovalov, A Small Sample [in Russian], Statistika, Moscow (1978).Google Scholar
  4. 4.
    A. A. Fedulov, Yu. G. Fedulov, and V. N. Tsygichko, An Introduction to the Theory of Statistically Unreliable Solutions [in Russian], Statistika, Moscow (1979).Google Scholar
  5. 5.
    S. D. Beshelev and F. G. Gurvich, Expert Estimates [in Russian], Nauka, Moscow (1973).Google Scholar
  6. 6.
    E. S. Ventzel’, Probability Theory [in Russian], Nauka, Moscow (1969).Google Scholar
  7. 7.
    A. P. Sage and J. L. Melsa, Estimation Theory with Applications to Communications and Control (McGraw Hill Series in Systems Science), McGraw Hill (1971).Google Scholar
  8. 8.
    D. R. Cox and D. V. Hinkley, Theoretical Statistics, Chapman and Hall (1979).Google Scholar
  9. 9.
    K. Shannon, Studies in Information Theory and Cybernetics [Russian translation], Izd. Inostr. Lit., Moscow (1963).Google Scholar
  10. 10.
    R. S. Guter and R. T. Reznikovskii, Programming and Computing Mathematics, Nauka, Moscow (1971).Google Scholar
  11. 11.
    A. A. Kolesnikov, Synergistic Control Theory [in Russian], Energoatomizdat, Moscow (1994).Google Scholar
  12. 12.
    V. I. Mudrov and V. L. Kushko, Measurement Processing Methods [in Russian], Sov. Radio, Moscow (1976).Google Scholar
  13. 13.
    M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, The Potential Functions Method in Machine Training Theory [in Russian], Nauka, Moscow (1970).Google Scholar
  14. 14.
    A. N. Voronin, Synergetic methods of data complexation, Cybern. Syst. Analysis, 42, No. 2, 183–187 (2006).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.National Aviation UniversityKyivUkraine

Personalised recommendations