Cybernetics and Systems Analysis

, Volume 50, Issue 5, pp 701–711 | Cite as

Hybrid Method of Multicriteria Evaluation of Decision Alternatives

  • N. D. Pankratova
  • N. I. Nedashkovskaya


In the paper we develop a hybrid decision support method in case of dependent decision criteria. It includes methods of decision theory, fuzzy sets, mathematical programming and statistics, which are adapted to different stages of the multicriteria evaluation of alternatives depending on the specific problem being solved and on the quality of the input expert information. The use of the hybrid method is illustrated by the solution of practical problems.


multicriteria evaluation method decision alternatives consistency of expert evaluation rank reversal dependent criteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. D. Pankratova and N. I. Nedashkivska, Models and Methods of Hierarchy Analysis: Theory. Application: A Hand Book [in Ukrainian], Politekhnika, Kyiv (2010).Google Scholar
  2. 2.
    T. L. Saaty, Decision-making with the AHP: Why is the principal eigenvector necessary, Eur. J. Oper. Res., 145, No. 1, 85–91 (2003).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    V. D. Nogin, A simplified version of the analytic hierarchy process based on the nonlinear convolution of criteria, Zh. Vych. Mat. Mat. Fiz., 44, No. 7, 1261–1270 (2004).MathSciNetGoogle Scholar
  4. 4.
    T. L. Saaty, Decision Making with Dependence and Feedback: The Analytic Network Process, RWS Publ. (2001).Google Scholar
  5. 5.
    V. G. Totsenko, Decision Support Methods and Systems. The Algorithmic Aspect [in Russian], Naukova Dumka, Kyiv (2002).Google Scholar
  6. 6.
    J. Figueira, V. Mousseau, and B. Roy, ELECTRE methods, in: J. Figueira, S. Greco, and M. Ehrgott (eds.), Multiple Criteria Decision Analysis: The State of the Art Surveys, Springer Science+Business Media, Inc., New York (2005), pp. 133–162.Google Scholar
  7. 7.
    S. Corrente, S. Greco, and R. Slowinski, Multiple criteria hierarchy process with ELECTRE and PROMETHEE, Omega, 41, Issue 5, 820–846 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Bilbao-Terol, M. Arenas-Parra, V. Cañal-Fernández, and J. Antomil-Ibias, Using TOPSIS for assessing the sustainability of government bond funds, Omega, 49, 1–17 (2014).CrossRefGoogle Scholar
  9. 9.
    D. Y. Chang, Applications of the extent analysis method on fuzzy AHP, Eur. J. Oper. Res., 95, No. 3, 649–655 (1996).CrossRefMATHGoogle Scholar
  10. 10.
    V. Kapoor and S. S. Tak, Fuzzy application to the analytic hierarchy process for robot selection, Fuzzy Optimization and Decision Making, 4, No. 2, 209–234 (2005).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    L. Mikhailov, Deriving priorities from fuzzy pairwise comparison judgements, Fuzzy Sets and Systems, 134, No. 3, 365–385 (2003).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    N. D. Pankratova and N. I. Nedashkovskaya, Method for processing fuzzy expert information in prediction problems. Part I, J. Autom. Inform. Sci., 39, Issue 4, 22–36 (2007).CrossRefGoogle Scholar
  13. 13.
    N. D. Pankratova and N. I. Nedashkovskaya, Method for processing fuzzy expert information in prediction problems. Part II, J. Autom. Inform. Sci., 39, Issue 6, 30–44 (2007).CrossRefGoogle Scholar
  14. 14.
    G. A. Miller, The magical number seven, plus or minus two: Some limits on our capacity for processing information, The Psychological Review, 63, 81–97 (1956),CrossRefGoogle Scholar
  15. 15.
    S. A. Aivazyan (ed.), V. M. Bukhshtaber, I. S. Enyukov, and L. D. Meshalkin, Applied Statistics: Classifications and Reduction of Dimensionality [in Russian], Finansy i Statistika, Moscow (1989).Google Scholar
  16. 16.
    K. Überla, Factor Analysis [in German], Springer, Berlin–Heidelberg–New York (1977).Google Scholar
  17. 17.
    E. G. Zhilyakov, Adaptive determination of relative importances of objects based on qualitative pairwise comparisons, Ekonom. Mat. Metody, 42, No. 2, 111–122 (2006).MATHGoogle Scholar
  18. 18.
    A. I. Orlov, Non-Numerical Statistics [in Russian], MZ-Press, Moscow (2004).Google Scholar
  19. 19.
    A. Salo and R. Hämäläinen, Preference programming through approximate ratio comparisons, Eur. J. Oper. Res., 82, No. 3, 458-475 (1995).CrossRefMATHGoogle Scholar
  20. 20.
    D. A. Pospelov (ed.), Fuzzy Sets in Control and Artificial Intelligence Models [in Russian], Nauka, Moscow (1986).Google Scholar
  21. 21.
    V. P. Bocharnikov, The Fuzzy Technology: Mathematical Fundamentals. Modeling Practice in Economics [in Russian], Nauka, St. Petersburg (2001).Google Scholar
  22. 22.
    J.-L. Marichal, An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria, IEEE Trans. on Fuzzy Systems, 8, No. 6, 800–807 (2000).MathSciNetCrossRefGoogle Scholar
  23. 23.
    T. L. Saaty, An exposition of the AHP in reply to the paper Remarks on the analytic hierarchy process, Management Sci., 36, No. 3, 259–268 (1990).MathSciNetCrossRefGoogle Scholar
  24. 24.
    N. I. Nedashkivska, Evaluating rank reversal in the hierarchy analysis method, Systemni Doslidzh. Inform. Tekhnologii, No. 4, 120–130 (2005).Google Scholar
  25. 25.
    V. G. Totsenko,On problem of reversal of alternatives ranks while multicriteria estimating, J. Autom. Inform. Sci., 38, No. 6, 1–11 (2006).CrossRefGoogle Scholar
  26. 26.
    N. Pankratova and N. Nedashkovskaya, Spectral coefficient of consistency of fuzzy expert information and estimation of its sensitivity to fuzzy scales when solving foresight problems, Inform. Theories and Applicat., 6, No. 4, 316–329 (2012).Google Scholar
  27. 27.
    N. I. Nedashkivska, The method of consistent pairwise comparisons while estimating decision alternatives by qualitative criterion, Systemni Doslidzh. Inform. Tekhnologii, No. 4, 67–79 (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Applied Systems AnalysisNational Technical University of Ukraine “Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations