Cybernetics and Systems Analysis

, Volume 50, Issue 5, pp 649–654 | Cite as

Theoretical Foundations for the Analytical Computation of Coefficients of Basic Numbers of Krestenson’s Transformation

  • Ya. M. Nykolaychuk
  • M. M. Kasianchuk
  • I. Z. Yakymenko


This paper presents theoretical foundations for the analytical transformation of coefficients of basic numbers of Krestenson’s transformation, which significantly reduces the number of operations required to convert numbers from a residue number system to the decimal number system. An appropriate selection of modules makes it possible to efficiently use all processor registers.


residue number system system of modules basic number Krestenson transformation number-theoretical basis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Melnik, Computer Architecture [in Russian], Volynsk. Oblast. Tipogr., Lutsk (2008).Google Scholar
  2. 2.
    V. K. Zadiraka and O. S. Oleksyuk, Computer Arithmetic of Multidigit Numbers [in Ukrainian], Vyshcha Shkola, Kyiv (2008).Google Scholar
  3. 3.
    N. Ferguson and B. Schneier, Practical Cryptography [Russian translation], Izd. Dom “Williams,” Moscow (2005).Google Scholar
  4. 4.
    V. Zadiraka and O. Oleksyuk, Computer Cryptology [in Ukrainian], Vyshcha Shkola, Kyiv (2002).Google Scholar
  5. 5.
    Ya. N. Nykolaychuk, Theory of Information Sources [in Russian], OOO “Terno-Graf,” Ternopil (2010).Google Scholar
  6. 6.
    Z. L. Rabinovich and V. A. Ramanauskas, Standard Computer Operations [in Russian], Tekhnika, Kyiv (1980).Google Scholar
  7. 7.
    I. Ya. Akushskii and D. I. Yuditskii, Machine Arithmetic in Residue Classes [in Russian], Sov. Radio, Moscow (1968).Google Scholar
  8. 8.
    V. A. Torgashev, A Residue Number System and Computer Reliability [in Russian], Sov. Radio, Moscow (1973).Google Scholar
  9. 9.
    Ya. N. Nykolaychuk, O. I. Volynskii, and S. V. Kulyna, “Theoretical foundations of construction and the structure of special processors in the Krestenson basis,” Vestn. Khmeln. Nats. Un-ta, 1, No. 3, 85–90 (2007).Google Scholar
  10. 10.
    N. I. Chervyakov, A. I. Galushkin, A. A. Evdokimov, A. V. Lavrinenko, and I. N. Lavrinenko, Application of Artificial Neural Networks and Residue Number Systems in Cryptography [in Russian], Fizmatlit, Moscow (2012).Google Scholar
  11. 11.
    A. A. Bukhshtab, Number Theory [in Russian], Prosveshcheniye, Moscow (1966).Google Scholar
  12. 12.
    O. I. Borodin, Number Theory [in Russian], Vyshcha Shkola, Kyiv (1970).Google Scholar
  13. 13.
    Ya. M. Nykolaychuk, “Developing the theory and complexes of technological tools for the formation, transmission, and processing of digital messages in local computer networks of automated systems,” DPhil, V. M. Glushkov Institute of Cybernetics of AS of UkrSSR, Kyiv (1991).Google Scholar
  14. 14.
    M. N. Kasyanchuk, “Theory and mathematical regularities of a perfect form of a residue number system,” in: Proc. Intern. Symposium “Issues of optimization of computations (IOC–XXXV),” Vol. 1, Kyiv–Katsiveli (2009), pp. 306–310.Google Scholar
  15. 15.
    M. Kasyanchuk, “Conception of theoretical tenets of a perfect form of the Krestenson transformation and its practical application,” Optoelectronic Information and Power Technologies, No. 2 (20), 43–48 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ya. M. Nykolaychuk
    • 1
  • M. M. Kasianchuk
    • 1
  • I. Z. Yakymenko
    • 1
  1. 1.Ternopil National Economic UniversityTernopilUkraine

Personalised recommendations