Cybernetics and Systems Analysis

, Volume 50, Issue 2, pp 304–315 | Cite as

Theory of Reliable and Secure Data Transmission in Sensory and Local Area Networks

  • Y. M. Nykolaychuk
  • B. M. Shevchyuk
  • A. R. Voronych
  • T. O. Zavediuk
  • V. M. Gladyuk


A systematic analysis of data transmission in sensor and local area networks is performed. Characteristics of a new class of signal correcting Galois field codes are described that provide error detection and correction at the physical level of computer networks without additionally generating and transmitting cyclic redundancy-check (CRC) codes. Methods are presented for processing harmonic signals by a digital processor with neurocomponents.


wireless sensor network processor with neurocomponents signal correcting code number-theoretic basis linear and spiral Galois code 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. N. Shevchuk, V. K. Zadiraka, L. O. Gnativ, and S. V. Frayer, Technology for Multifunctional Processing and Information Transmission in Monitoring Networks [in Russian], Naukova Dumka, Kyiv (2010).Google Scholar
  2. 2.
    N. V. Shakhnovich, Modern Wireless Communications Technologies [in Russian], 2nd Edition, Tekhnosfera, Moscow (2006).Google Scholar
  3. 3.
    B. Sklar, Digital Communications: Fundamentals and Applications, 2nd Edition, Prentice Hall, New Jersey (2001).Google Scholar
  4. 4.
    J. Geier, Wireless Networks First-Step, Cisco Press, Indianapolis (2005).Google Scholar
  5. 5.
    Ya. M. Nykolaychuk, A. R. Voronich, and V. M. Gladyuk, Wireless Sensor Network, Ukrainian Patent 73756, MPK (2012.01) H04W 4/00, Publ. 10.10.2012, Bul. No. 19.Google Scholar
  6. 6.
    B. N. Shevchyuk, “Data processing, encryption, and transmission by means of abonent systems of informationally-efficient radio networks,” Computer Means, Networks, and Systems, No. 9, 130–139 (2010).Google Scholar
  7. 7.
    W. Peterson and E. J. Weldon Jr., Error-Correcting Codes, 2nd Edition, MIT Press, Cambridge (Mass.) (1972).MATHGoogle Scholar
  8. 8.
    Ya. M. Nykolaychuk, Theory of Information Sources [in Russian], 2nd Edition, OOO “Terno-Graph,” Ternopil (2010).Google Scholar
  9. 9.
    Ya. M. Nykolaychuk, Galois Field Codes: Theory and Application [in Russian], OOO “Terno-Graph,” Ternopil (2010).Google Scholar
  10. 10.
    E. Artin, Galois Theory [Russian translation], MTsNMO, Moscow (2004).Google Scholar
  11. 11.
    Ya. M. Nykolaychuk and A. R. Voronich, Multi-Channel Method of Information Transmission and Reception, Ukrainian Patent 63648, MPK (2011.01) H04J13/00, Publ. 10.10.2011, Bul. No. 19.Google Scholar
  12. 12.
    Ya. M. Nykolaychuk and A. R. Voronych, “Entropic methods of signal processing with protection from errors in Galois base,” J. Qafqaz Univ. of Baku (Azerbaijan), No. 30, 69–77 (2010).Google Scholar
  13. 13.
    Ya. M. Nykolaychuk and T. O. Zavedyuk, “Structure and functions of a recurrent bioneuron for pattern recognition in Hamming space,” Postup v Nauku, No. 6, 37–39 (2010).Google Scholar
  14. 14.
    T. O. Zavedjuk, Ya. M. Nykolaychuk, and A. R. Voronich, “Self-reconstructed system of transmission of signals of a bioneuron fiber in the Krestenson basis,” Visn. Khmel’n. Nath. Un-tu, No. 4 (191), 137–142 (2012).Google Scholar
  15. 15.
    Ye. Bodyanskiy, I. Pliss, and O. Vynokurova, “Hybrid wavelet-neuro-fuzzy system using adaptive W-neurons,” Wissenschaftliche Berichte, FH Zittau/Goerlitz, 106, Nos. 2454–2490, 301–308 (2010).Google Scholar
  16. 16.
    A. A. Voronov (ed.), Automatic Control Theory [in Russian], Vyssh. Shk., Pt. I (1977).Google Scholar
  17. 17.
    O. G. Ivakhnenko and V. G. Lapa, Prediction of Random Processes [in Ukrainian], Naukova Dumka, Kyiv (1969).Google Scholar
  18. 18.
    T. O. Zavedyuk, “Specifics of recognition of signals are on the basis of correlation neuronlike processor,” in: Proc. Xth Intern. Conf. TCSET’2010 “Modern problems of radioelectronics, telecommunication, and computer engineering,” Slavske (2010).Google Scholar
  19. 19.
    T. Zavedyuk and N. Shyrmovska, “Specialized data neuroprocessors and diagnostics quasisteady objects based on cluster models,” in: XIth Intern. Conf. “The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM 2011),” Lviv Polytech. Nat. Univ., Lviv (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Y. M. Nykolaychuk
    • 1
  • B. M. Shevchyuk
    • 2
  • A. R. Voronych
    • 3
  • T. O. Zavediuk
    • 3
  • V. M. Gladyuk
    • 1
  1. 1.Ternopil National Economic UniversityTernopilUkraine
  2. 2.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine
  3. 3.Ivano-Frankivsk National Technical University of Oil And GasIvano-FrankivskUkraine

Personalised recommendations