Skip to main content
Log in

Fractional Differential Mathematical Models of the Dynamics of Nonequilibrium Geomigration Processes and Problems with Nonlocal Boundary Conditions

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The analytical solutions of boundary-value problems with nonlocal boundary conditions are presented for two fractional differential mathematical models of the dynamics of a geomigration process non-equilibrium in time. The models based on the equations with the Caputo and Hilfer derivatives of fractional order are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  2. L. I. Sedov, Continuum Mechanics, Vol. 2 [in Russian], Nauka, Moscow (1973).

  3. M. M. Khasanov and G. T. Bulgakova, Nonlinear and Nonequilibrium Effects in Rheologically Complex Media [in Russian], Inst. Komp. Issled., Moscow–Izhevsk (2003).

  4. S. L. Sobolev, “Locally nonequilibrium models of transition processes,” Usp. Fiz. Nauk, 167, No. 10, 1095–1106 (1997).

    Article  Google Scholar 

  5. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  6. I. Podlubny, Fractional Differential Equations, Acad. Press, New York (1999).

    MATH  Google Scholar 

  7. R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in: A. Carpinteri and F. Mainardi (eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien (1997), pp. 223–276.

    Chapter  Google Scholar 

  8. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and some of their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).

    Google Scholar 

  9. V. V. Uchaikin, The Method of Fractional Derivatives [in Russian], Artishok, Ul’yanovsk (2008).

    Google Scholar 

  10. R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, “Time fractional diffusion: A discrete random walk approach,” Nonlinear Dynamics, 29, No. 1–4, 129–143 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Paradisi, R. Cesari, F. Mainardi, and F. Tampieri, “The fractional Fick’s law for nonlocal transport processes,” Physica A, 293, No. 1–2, 130–142 (2001).

    Article  MATH  Google Scholar 

  12. H. G. Sun, W. Chen, C. Li, and Y. Q. Chen, “Fractional differential models for anomalous diffusion” Physica A, 389, 2719–2724 (2010).

    Article  Google Scholar 

  13. V. M. Bulavatskiy, “Some mathematical models of geoinformatics for describing mass transfer processes under time-nonlocal conditions,” J. Autom. Inform. Sci., 43, Issue 6, 49–59 (2011).

    Article  Google Scholar 

  14. V. M. Bulavatskiy, “Mathematical model of geoinformatics for investigation of dynamics for locally nonequilibrium geofiltration processes,” J. Autom. Inform. Sci., 43, Issue 12, 12–20 (2011).

    Article  Google Scholar 

  15. V. M. Bulavatskiy and Yu. G. Krivonos, “On one geoinformation fractional differential model of the variable order,” J. Autom. Inform. Sci., 44, Issue 6, 1–7 (2012).

    Article  Google Scholar 

  16. V. M. Bulavatsky, “Nonclassical mathematical model in geoinformatics to solve dynamic problems for nonequilibrium nonisothermal seepage fields,” Cybern. Syst. Analysis, 47, No. 6, 898–906 (2011).

    Article  MathSciNet  Google Scholar 

  17. V. M. Bulavatsky and Yu. G. Krivonos, “Mathematical modeling in the geoinformational problem of the dynamics of geomigration under space–time nonlocality,” Cybern. Syst. Analysis, 48, No. 4, 539–546 (2012).

    Article  Google Scholar 

  18. I. I. Lyashko, L. I. Demchenko, and G. E. Mistetskii, Numerical Solution of Heat- and Mass Transfer Problems in Porous Media [in Russian], Naukova Dumka, Kyiv (1991).

    Google Scholar 

  19. M. Kaczmarek and T. Huekel, “Chemo-mechanical consolidation of clays: analytical solution for a linearized one-dimensional problem,” Transport in Porous Media, 32, 49–74 (1998).

    Article  Google Scholar 

  20. N. I. Ionkin, “Solving one boundary-value problem of the thermal conduction theory with the nonclassical boundary condition,” Diff. Uravn., 13, No. 2, 294–304 (1977).

    MATH  MathSciNet  Google Scholar 

  21. N. I. Ionkin, “On the stability of one problem of the thermal conduction theory with the nonclassical boundary condition,” Diff. Uravn., 15, No. 7, 1280–1283 (1979).

    Google Scholar 

  22. V. S. Vladimirov, The Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  23. R. Hilfer, Fractional Time Evolution, in: R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000), pp. 87–130.

    Chapter  Google Scholar 

  24. R. Hilfer, Y. Luchko, and Z. Tomovski, “Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives,” Fraction. Calculus and Appl. Analysis, 12, No. 3, 299–318 (2009).

    MATH  MathSciNet  Google Scholar 

  25. Z. Tomovski, R. Hilfer, and H. M. Srivastava, “Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions,” Integral Transforms and Special Functions, No. 11, 797–814 (2010).

  26. T. Sandev, R. Metzler, and Z. Tomovski, “Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative,” J. Physics A, 44, 5–52 (2011).

    Article  MathSciNet  Google Scholar 

  27. N. I. Ionkin and E. I. Moiseev, “On the problem for the heat conduction equation with two-point boundary conditions,” Diff. Uravn., 15, No. 7, 1284–1295 (1979).

    MATH  MathSciNet  Google Scholar 

  28. A. Yu. Mokin, “On a family of initial-boundary value problems for the heat equation,” 45, No. 1, 126–141 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Bulavatsky.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 1, January–February, 2014, pp. 93–101.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulavatsky, V.M. Fractional Differential Mathematical Models of the Dynamics of Nonequilibrium Geomigration Processes and Problems with Nonlocal Boundary Conditions. Cybern Syst Anal 50, 81–89 (2014). https://doi.org/10.1007/s10559-014-9594-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-014-9594-8

Keywords

Navigation