Advertisement

Cybernetics and Systems Analysis

, Volume 49, Issue 4, pp 569–577 | Cite as

Modeling the effect of magnetic field on wave propagation in ferrofluids and elastic bodies with void fraction

  • I. T. Selezov
  • Yu. G. Krivonos
Article

Abstract

The paper presents two new generalized wave models. One considers the effect of magnetic field on the elastic solid with void fraction. The other is a new generalized ferrohydrodynamic model describing wave propagation with finite velocities. The existence of wave solutions is investigated.

Keywords

magnetic field elastic body void fraction ferrofluid wave propagation finite velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. C. Cowin, “Thermodynamic model for porous materials with vacuous pores,” J. Appl. Physics, 43, No. 6, 2495–2497 (1972).CrossRefGoogle Scholar
  2. 2.
    S. C. Cowin and J. W. Nunziato, “Linear elastic materials with voids,” J. Elasticity, 13, 125–147 (1983).MATHCrossRefGoogle Scholar
  3. 3.
    I. T. Selezov, “Wave processes in fluids and elastic media,” Int. J. Fluid Mechanics Research, 30, No. 2, 219–249 (2003).MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. S. Chandrasekharalah, “Complete solutions in the theory of elastic materials with voids,” Quart. J. Mech. and Appl. Math., 40, Pt. 3, 401–414 (1987).MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Scalia, “Shock waves in viscoelastic materials with voids,” Wave Motion, 19, 125–133 (1994).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    J. C. Maxwell, “On the dynamical theory of gases,” Phil. Trans. Roy. Soc., 157, 49–89 (1967).Google Scholar
  7. 7.
    I. T. Selezov, “On wave hyperbolic model for disturbance propagation in magnetic fluid,” 191, Ser. Operator Theory. Advances and Applications, Birkhauser Verlag, Basel (2009), pp. 221–225.Google Scholar
  8. 8.
    G. Colosqui, H. Chen, X. Shan, and I. Staroselsky, “Propagating high-frequency shear waves in simple fluids,” Physics of Fluids, 21, 013105-1–013105-8 (2009).Google Scholar
  9. 9.
    J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., New York–London (1962).Google Scholar
  10. 10.
    I. T. Selezov and Yu. G. Krivonos, Mathematical Methods in Problems of Wave Propagation and Diffraction [in Russian], Naukova Dumka, Kyiv (2012).Google Scholar
  11. 11.
    I. T. Selezov, Yu. G. Krivonos, and V. V. Yakovlev, Wave Scattering by Local Inhomogeneities in Continuous Media [in Russian], Naukova Dumka, Kyiv (1985).Google Scholar
  12. 12.
    Yu. I. Samoilenko, “Problems and methods of physical cybernetics,” in: Pratsi Inst. Matematiki NANU, 56 (2006).Google Scholar
  13. 13.
    J. L. Neuringer and R. E. Rosensweig, “Ferrohydrodynamics,” Phys. Fluids., 7, No. 12, 1927–1937 (1964).MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. E. Rosensweig, Ferrohydrodynamics, Cambridge Univ. Press (1985).Google Scholar
  15. 15.
    B. Berkovsky, V. Medvedev, and M. Krakov, Magnetic Fluids: Engineering Applications, Oxford Univ. Press (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of HydromechanicsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations