Cybernetics and Systems Analysis

, Volume 49, Issue 3, pp 465–471 | Cite as

Asymptotic properties of the method of observed mean for homogeneous random fields



The empirical estimate of the unknown parameter of a homogenous (in restricted sense) random field with continuous time and continuous states observed in a circle is considered. The strong consistency of the estimate is proved. The conditions under which the estimates weakly converge to the Gaussian distribution are established.


method of observed mean random field probability function minimization continuity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. S. Knopov, “Asymptotic properties of some classes of M-estimates,” Cybern. Syst. Analysis, 33, No. 4, 468–481 (1997).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    P. S. Knopov and E. J. Kasitskaya, Empirical Estimates in Stochastic Optimization and Identification, Kluwer Acad. Publ., Dordrecht (2002).MATHCrossRefGoogle Scholar
  3. 3.
    P. S. Knopov, “On some classes of M-estimates for non-stationary regression models,” Theory Stoch. Proc., 3 (19), No. 1–2, 222–238 (1997).Google Scholar
  4. 4.
    P. S. Knopov and E. I. Kasitskaya, “Large deviations of empirical estimates in stochastic programming problems,” Cybern. Syst. Analysis, 40, No. 4, 510–516 (2004).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    V. V. Yurinskii, “The strong law of large numbers for random fields,” Mat. Zametki, 16, No. 1, 141–149 (1974).MathSciNetGoogle Scholar
  6. 6.
    A.Ya. Dorogovtsev, Theory of Estimates of Parameters of Random Processes [in Russian], Vyshcha Shkola, Kyiv (1982).Google Scholar
  7. 7.
    N. N. Leonenko and A. V. Ivanov, Statistical Analysis of Random Fields [in Russian], Vyshcha Shkola, Kyiv (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations