Advertisement

Cybernetics and Systems Analysis

, Volume 49, Issue 2, pp 251–258 | Cite as

Dependence of objective function on several variables in layout problem and its solution by the method of structural-alphabetic search

  • N. K. Tymofijeva
Article
  • 40 Downloads

Abstract

The problem of the layout of objects of different sizes is analyzed. The objective function is shown to depend on several variables, which are various combinatorial configurations. According to this principle, the problem is divided into several subproblems; therefore, a self-adjusting algorithm is developed to solve it. A location problem for objects of the same size is solved by the structural-alphabetic search, which is based on the known solvable case.

Keywords

combinatorial optimization layout of different-sized objects combinatorial configuration objective function method of structural-alphabetic search permutation set partition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Kantorovich and V. A. Zalgaller, Rational Cutting of Iindustrial Materials [in Russian], Nauka, SO AN SSSR, Novosibirsk (1971).Google Scholar
  2. 2.
    S. A. Maiorov (ed.), G. I. Novikov, O. F. Nemolochnov, et al., Design of Digital Computers [in Russian], Vyssh. Shk., Moscow (1972).Google Scholar
  3. 3.
    V. A. Selyutin, Machine Design of Electronic Devices [in Russian], Sov. Radio, Moscow (1977).Google Scholar
  4. 4.
    I. V. Sergienko and M. F. Kaspshitskaya, Models and Methods for Solving Combinatorial Optimization Problems on a Computer [in Russian], Naukova Dumka, Kyiv (1981).Google Scholar
  5. 5.
    L. F. Hulianytskyi, I. V. Sergienko, and A. N. Khodzinskii, The VECTOR-2 Dialogue Software Package [in Russian], Prepr., V. M. Glushkov Inst. Cybern., Kyiv (1981).Google Scholar
  6. 6.
    V. L. Rvachev, R-function Theory and some its Applications [in Russian], Naukova Dumka, Kyiv (1982).Google Scholar
  7. 7.
    Yu. G. Stoyan, Layout of Geometrical Objects [in Russian], Naukova Dumka, Kyiv (1975).Google Scholar
  8. 8.
    Yu. G. Stoyan and N. I. Gil’, Methods and Algorithms of the Layout of Plane Geometric Objects [in Russian], Naukova Dumka, Kyiv (1976).Google Scholar
  9. 9.
    Yu. G. Stoyan and V. P. Putyatin, Layout of Sources of Physical Fields [in Russian], Naukova Dumka, Kyiv (1981).Google Scholar
  10. 10.
    Yu. G. Stoyan and S. V. Yakovlev, Mathematical Models and Optimization Methods of Geometrical Design [in Russian], Naukova Dumka, Kyiv (1986).Google Scholar
  11. 11.
    Yu. G. Stoyan and V. Z. Sokolovskii “Solving an layout problem by the contracting neighborhood method,” USiM, No. 5, 114–116 (1978).Google Scholar
  12. 12.
    E.V. Avdeev, T. A. Eremin, I. P.Norenkov (ed.), and M. I. Leskov, Systems of Computer-Aided Design in Radio Electronics [in Russian], Radio i Svyaz’, Moscow (1986).Google Scholar
  13. 13.
    L. B. Abraitis, R. I. Sheinauskas, and V. A. Zhilyavichyus, Automation of Computer Designing [in Russian], Sov. Radio, Moscow (1978).Google Scholar
  14. 14.
    E. P. Gerasimenko, V. I. Kot, I. Ya. Landau, and V. M. Somkin, Automation of Designing Printed Blocks with Arbitrarily Shaped Units [in Russian], Mashinostroenie, Moscow (1979).Google Scholar
  15. 15.
    D. A. Rublyauskas, “An algorithm to arrange different-sized elements on a printed-circuit board,” in: Computing Technique, Issue 14, [in Russian], Polytechnic. Inst., Kaunas (1981), pp. 100–101.Google Scholar
  16. 16.
    I.-K. L. Matitskas, A. V. Rishkus, and V. Yu. Chiritsa, “Layout of different-sized units in integer-multiple positions,” in: Computing Technique, Issue 10, [in Russian], Polytechnic. Inst., Kaunas (1978), pp. 71–73.Google Scholar
  17. 17.
    V. M. Kureichik and A. Yu. Zolot’ko, “An algorithm of layout of different-sized elements on a coordinate mesh with fixed dimensions,” in: Computing Technique, Issue 14, [in Russian], Polytechnic. Inst., Kaunas (1981), pp. 107–108.Google Scholar
  18. 18.
    A. I. Petrenko and A. Ya. Tetelbaum, Formal Design of Electronic Computers [in Russian], Sov. Radio, Moscow (1979).Google Scholar
  19. 19.
    I. A. Rustamov and A. A. Tyutin, “Solving the problem of layout of constructive components in view of trace requirements,” USiM, No. 6, 107–115 (1975).Google Scholar
  20. 20.
    V. A. Arbuzov and N. V. Antonova, “A relaxation algorithm of layout by the group permutation method,” in: Automation of the Design of RED and ZVA: Abstracts of Papers [in Russian], Polytechn. Inst., Penza (1982), pp. 49–50.Google Scholar
  21. 21.
    I.-K. L. Matitskas, “An algorithm of the layout of different-sized elements in multiple positions,” USiM, No. 4, 120–123 (1979).Google Scholar
  22. 22.
    C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Englewood Cliffs, Prentice Hall (1982).Google Scholar
  23. 23.
    L. F. Hulianytskyi and N. K. Tymofijeva, “Layout of different-sized elements on printed-circuit boards,” USiM, No. 3, 50–53 (1982).Google Scholar
  24. 24.
    T. V. Kobzeva, “On the problem of layout of different-sized elements,” USiM, No. 1, 87–89 (1982).Google Scholar
  25. 25.
    L. F. Hulianytskyi, S. A. Malyshko, and I. V. Sergienko, “An approach to formalizing and solving problems of the layout of different-sized elements of RED,” USiM, No. 4, 63–70 (1990).Google Scholar
  26. 26.
    V. B. Artyomov and L. P. Ryabov, “An algorithm to arrange different-sized units on printed-circuit board,” Obmen Opytom Radiopromyshl., No. 2, 23–31 (1977).Google Scholar
  27. 27.
    V. P. Putyatin and A. B. El’kin, “A mathematical model of partitioning optimization problem in agribusiness industry,” in: Vestn. NTU KhPI, A Collection of Sci. Papers, Systems Analysis, Control, and Information Technologies, Issue 18 [in Russian], KhNTU KhPI (2007), pp. 98–105.Google Scholar
  28. 28.
    S. I. Yaremchuk and O. M. Morgalyuk, “Using the penalty function method to solve the source layout minimax problem,” in: Proc. All-Ukr. Sci.-Pract. Conf. Systems Analysis. Informatics, Control, SAIU-2010, 4–5 March 2010 [in Ukrainian], Klasich. Privat. Univ., Zaporizhzhya (2010), pp. 208–210.Google Scholar
  29. 29.
    I. V. Kozin, “Mathetical models of layout, packing, partition with invariance condition for groups of transformation,” Author’s Abstracts of PhD Theses, Inst. Cybern. NASU, Kyiv (2010).Google Scholar
  30. 30.
    R. P. Bazilevich and I. F. Shcherbyuk, “Artificial hierarchical clastering in layout problems for different-sized elements,” Isk. Intellekt, No. 3, 484–489 (2002).Google Scholar
  31. 31.
    B. D. Ginzburg, An algorithm to arrange units on printed-circuit board,” Obmen Opytom v Radioprom., Issue 4, 31–33 (1972).Google Scholar
  32. 32.
    I. A. Chub and M. V. Novozhilova, “A method to solve a linearized layout problem for unoriented geometrical objects,” USiM, No. 5, 47–52 (2011).Google Scholar
  33. 33.
    J. R. Barra, M. Becker, E. F. Kouka, and M. Tricot, “Application of data analysis methods and of simulated annealing for the automatic layout of circuits,” Comput. Syst. Sci. Eng., 2, No. 1, 3–15 (1987).Google Scholar
  34. 34.
    Deepak Sherlekar and J. Jaja, “Imput sensitive VLSI layouts for graphs of arbitrary degree,” Lect. Notes Comput. Sci., 319, 268–277 (1988).Google Scholar
  35. 35.
    F. R. K. Chung, R. L. Graham, and M. E. Saks, “A dynamic location problem for graphs,” Combinatorica, 9, No. 2, 111–131 (1989).MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    L. Song and A. A. Vannelli, “VLSI placement method using tabu search,” Microelectron J., 23, No. 3, 167–172 (1992).CrossRefGoogle Scholar
  37. 37.
    A. H. Hajiyev and G. J. Afandiyev, “On theoretical and probabilistic and statistical approaches for finding the optimal keyboard layout,” J. Autom. Inform. Sci., 41, Issue 10, 65–70 (2009).CrossRefGoogle Scholar
  38. 38.
    N. K. Tymofijeva, “Dependence of objective function in combinatorial optimization problems on many variables and hybrid algorithms,” Visn. Vinnytsk. Politekhn. Inst., No. 2, 130–136 (2009).Google Scholar
  39. 39.
    N. K. Tymofijeva, “Numerical-theoretical methods to solve combinatorial optimization problems,” Author’s Abstracts of PhD Theses, Inst. Cybern. NASU (2007).Google Scholar
  40. 40.
    N. K. Tymofijeva, “Dependence of objective function of input data structure in combinatorial optimization problems,” Vest. NTU KhPI, Special Issue. Systems Analysis, Control, and Information Technologies: A Collection of Scientific Papers, No. 55, Kharkov (2005), pp. 81–86.Google Scholar
  41. 41.
    G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge (1934).Google Scholar
  42. 42.
    N. K. Tymofijeva, “Matrices in combinatorial optimization problems,” Probl. Upravl. Inform., Issue 3, 104–113 (1996).Google Scholar
  43. 43.
    N. K. Tymofijeva, “An algorithm of the optimal layout of base elements in cases of integral microcircuits,” in: Algorithms and Programs to Solve Discrete Optimization Problems, Inst. Cybern. NASU, Kyiv (1980), pp. 3–20.Google Scholar
  44. 44.
    N. K. Tymofijeva, “On nature of uncertainty and variable criteria in the partition problems,” J. Autom. Inform. Sci., 41, Issue 9, 26–38 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.International Scientific and Training Center of Information Technologies and Systems of the National Academy of Sciences of Ukraine and Ministry of Education and ScienceYouth and SportsKyivUkraine

Personalised recommendations