Cybernetics and Systems Analysis

, Volume 48, Issue 6, pp 837–845 | Cite as

Mathematical modeling of the interaction of non-oriented convex polytopes



An Φ-function for two non-oriented convex polytopes is set up. The Φ-function can be used to construct a mathematical model of packing optimization problem for non-oriented polytopes. An example of an Φ-function for two non-oriented parallelepipeds is given.


mathematical modeling Φ-function non-oriented convex polytopes packing optimization problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. G. Stoyan and S. V. Yakovlev, Mathematical Models and Optimization Methods of Geometric Design [in Russian], Naukova Dumka, Kyiv (1986).Google Scholar
  2. 2.
    N. Mayer, E. Fogel, and D. Halperin, “Fast and robust retrieval of Minkowski sums of rotating convex polyhedra in 3-space,” in: Proc. 14th ACM Symp. on Solid and Physical Modeling, Haifa, Israel (2010), pp. 1–10.Google Scholar
  3. 3.
    O. Takayuki, Approaches to 3D Free-Form Cutting and Packing Problems and their Applications: A Survey, IBM Research Laboratory, Tokyo (1998).Google Scholar
  4. 4.
    J. Egeblad, B. K. Nielsen, and M. Brazil, “Translational packing of arbitrary polytopes,” Computational Geometry: Theory and Applications, 42, No. 4, 269–288 (2009).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    S. Torquato and F. H. Stillinger, “Jammed hard-particle packings: From Kepler to Bernal and beyond,” Reviews of Modern Physics, 82, No. 3, 2633–2672 (2010).MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Gan, N. Gopinathan, X. Jia, and R. A. Williams, “Predicting packing characteristics of particles of arbitrary shapes,” KONA, No. 22, 82–93 (2004).Google Scholar
  7. 7.
    V. S. Doroshenko, “3D-technologies in foundry,” Vynakhidnyk i Ratsionalizator, No. 2, 12–15 (2009).Google Scholar
  8. 8.
    F. Eisenbrand, S. Funke, A. Karrenbauer, J. Reichel, and E. Schömer, “Packing a trunk — now with a twist!,” in: Proc. SPM 2005 ACM Symp. on Solid and Physical Modeling, New York, USA (2005), pp. 197–206.Google Scholar
  9. 9.
    U. Betke and M. Henk, “Densest lattice packings of 3-polytopes,” Computational Geometry, 16, No. 3, 157–186 (2000).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    J. Bennell and J. Oliveira, “The geometry of nesting problems: A tutorial,” Europ. J. of Operational Research, No. 184, 397–415 (2008).Google Scholar
  11. 11.
    Yu. G. Stoyan, “Φ-function and its basic properties,” Dokl. NAN Ukr., Ser. A, No. 8, 112–117 (2001).Google Scholar
  12. 12.
    N. Chernov, Y. Stoyan, and T. Romanova, “Mathematical model and efficient algorithms for object packing problem,” Computational Geometry: Theory and Applications, 43, No. 5, 535–553 (2010).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    G. Scheithauer, Yu. G. Stoyan, and T. Ye. Romanova, “Mathematical modeling of interactions of primary geometric 3D objects,” Cybern. Syst. Analysis, 41, No. 3, 332–342 (2005).MATHCrossRefGoogle Scholar
  14. 14.
    Y. Stoyan, J. Terno, G. Scheithauer, M. Gil, and T. Romanova, “Construction of a Phi-function for two convex polytopes,” Applicationes Mathematicae, 29, No. 2, 199–218 (2002).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Yu. Stoyan, A. Pankratov, and G. Sheithauer, “Translational packing non-convex polytopes into a parallelepiped,” J. of Mechanical Engineering, 12, No. 3, 67–76 (2009).Google Scholar
  16. 16.
    K. Kuratowski, Topology, Vol. 1, Academic Press, New York (1966).Google Scholar
  17. 17.
    Y. Stoyan, G. Scheithauer, M. Gil, and T. Romanova, “Φ-function for complex 2D objects,” 4OR, Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 2, No. 1, 69–84 (2004).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.A. N. Podgorny Institute for Problems of Mechanical EngineeringNational Academy of Sciences of Ukraine,KharkovUkraine

Personalised recommendations