Advertisement

Cybernetics and Systems Analysis

, Volume 48, Issue 4, pp 539–546 | Cite as

Mathematical modeling in the geoinformation problem of the dynamics of geomigration under space–time nonlocality

  • V. M. Bulavatsky
  • Yu. G. Krivonos
Article

Abstract

A mathematical model is set up to analyze the dynamics of locally time- and space-nonequilibrium migration–consolidation processes in a porous earth saturated with salt solutions under mass transfer. The corresponding nonlinear boundary-value problem is stated, an algorithm of its approximate solution is presented, and the results of the numerical implementation of the algorithm are given.

Keywords

mathematical modeling nonclassical models nonequilibrium geomigration systems of fractional differential equations boundary-value problems approximate solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Bulavatsky, Yu. G. Krivonos, and V. V. Skopetskyi, Nonclassical Mathematical Models of Heat and Mass Transfer [in Ukrainian], Naukova Dumka, Kyiv (2005).Google Scholar
  2. 2.
    A. P. Vlasyuk and P. M. Martynyuk, Mathematical Modeling of Soil Consolidation during the Filtration of Salt Solutions [in Ukrainian], Vyd. UDUVGP, Rivne (2004).Google Scholar
  3. 3.
    V. A. Mironenko and V. M. Shestakov, Fundamentals of Hydrogeomechanics [in Russian], Nedra, Moscow (1974).Google Scholar
  4. 4.
    G. I. Barenblatt, V. N. Entov, and V. M. Ryzhik, Motion of Fluids and Gases in Natural Layers [in Russian], Nedra, Moscow (1984).Google Scholar
  5. 5.
    V. M. Shestakov, Ground Water Dynamics [in Russian], Izd. MGU, Moscow (1979).Google Scholar
  6. 6.
    V. M. Bulavatsky and V. V. Skopetskii, “Mathematical modeling of the dynamics of consolidation processes with relaxation effects,” Cybern. Syst. Analysis, 44, No. 6, 840–846 (2008).CrossRefGoogle Scholar
  7. 7.
    V. M. Bulavatskii and V. V. Skopetskii, “System approach to mathematical modeling of filtration consolidation,” Cybern. Syst. Analysis, 42, No. 6, 831–838 (2006).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    A. Ya. Bomba, V. M. Bulavatsky, and V. V. Skopetskyi, Nonlinear Mathematical Models of Geohydrodynamic Processes [in Ukrainian], Naukova Dumka, Kyiv (2007).Google Scholar
  9. 9.
    A. P. Vlasyuk and P. M. Martynyuk, Mathematical Modeling of Soil Consolidation during the Filtration of Salt Solutions under Nonisothermal Conditions [in Ukrainian], Vyd. NUVGP, Rivne (2008).Google Scholar
  10. 10.
    V. M. Bulavatskiy and V. V. Skopetsky, “On a nonisothermal consolidation mathematical model of geoinformatics,” J. Autom. Inform. Sci., Vol. 42, Issue 12, 1–12 (2010).CrossRefGoogle Scholar
  11. 11.
    V. M. Bulavatskiy and V. V. Skopetsky, “Approximate solution of one dynamic problem of geoinformatics,” J. Autom. Inform. Sci., Vol. 42, Issue 5, 1–11 (2010).CrossRefGoogle Scholar
  12. 12.
    M. M. Khasanov and G. T. Bulgakov, Nonlinear and Nonequilibrium Effects in Geologically Complex Media [in Russian], Inst. Komp. Issled., Izhevsk (2003).Google Scholar
  13. 13.
    V. M. Bulavatskiy, “Mathematical model of geoinformatics for investigation of dynamics for locally nonequilibrium geofiltration processes,” J. Autom. Inform. Sci., Vol. 43, Issue 12, 12–20 (2011).CrossRefGoogle Scholar
  14. 14.
    I. I. Lyashko, L. I. Demchenko, and E. Mistetskii, Numerical Solution of Problems of Heat and Mass Transfer in Porous Media [in Russian], Naukova Dumka, Kyiv (1991).Google Scholar
  15. 15.
    A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).MATHGoogle Scholar
  16. 16.
    I. Podlubny, Fractional Differential Equations, Acad. Press, New York (1999).MATHGoogle Scholar
  17. 17.
    A. A. Chikrii and I. I. Matichin, “An analog of the Cauchy formula for linear systems of arbitrary fractional order,” Dokl. NAN Ukrainy, No. 1, 50–55 (2007).MathSciNetGoogle Scholar
  18. 18.
    A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).Google Scholar
  19. 19.
    A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer, Vol. 2, Wiley, New York (1995).Google Scholar
  20. 20.
    F. I. Taukenova and M. Kh. Shkhanukov–Lafishev, “Difference methods for solving boundary value problems for fractional differential equations,” Comp. Math. Math. Phys., 46, No. 10, 1785–1795 (2006).MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Shen and F. Liu, “Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends,” ANZIAM J., No. 46, C871–C887 (2005).MathSciNetGoogle Scholar
  22. 22.
    M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1965).Google Scholar
  23. 23.
    G. N. Polozhii, The Method of Summary Representation for Numerical Solution of Problems of Mathematical Physics, Pergamon Press, Oxford (1965).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations