Cybernetics and Systems Analysis

, Volume 48, Issue 1, pp 51–66 | Cite as

Developing feasible and optimal schedules of jobs on one machine



The paper considers the properties of feasible and optimal scheduling of jobs on one machine under constraints on the terms of the beginning and completion of jobs and on partial sequences of job performance. The established properties and the lower-bound estimates of the length of the optimal schedule are used to develop methods for the exact and approximate solutions of the formulated problem by sequential optimization algorithms. The proposed algorithms are illustrated by numerical examples and can be successfully applied to solve these problems in the absence of constraints.


optimal schedule job sequencing makespan constraints sequential optimization algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, “Complexity of machine scheduling problems,” Annals of Discrete Mathematics, 1, 343–362 (1977).MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, “Sequencing and scheduling algorithms and complexity,” in: S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, Handbooks in Operations Research and Management Science, Vol. 4, Logistics of Production and Inventory, Elsevier, Amsterdam (1993).Google Scholar
  3. 3.
    K. R. Baker and Z.-S. Su, “Sequencing with due-dates and early start times to minimize maximum tardiness,” Naval Research Logistics Quarterly, 21, 171–176 (1974).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    G. McMahon and M. Florian, “On scheduling with ready times and due dates to minimize maximum lateness,” Operations Research, 23, 475–482 (1975).MATHCrossRefGoogle Scholar
  5. 5.
    J. Carlier, “The one-machine sequencing problem,” European J. Oper. Res., 11, 42–47 (1982).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    E. Nowicki and S. Zdrzalka, “A note on minimizing maximum lateness in one-machine sequencing problem with release dates,” European J. Oper. Res., 23, 266–267 (1986).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    J. Grabowski, E. Nowicki, and S. Zdrzalka, “A block approach for single machine scheduling with release dates and due dates,” European J. Oper. Res., 26, 278–285 (1986).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    W. Domschke, A. Schol, and S. Vob, Produktionsplanung. Ablauforganisatorische Aspekte, Springer Verlag, Berlin (1997).Google Scholar
  9. 9.
    B. J. Lageweg, J. K. Lenstra, E. L. Lawler, and A. H. G. Rinnooy Kan, “Computer-aided complexity classification of combinatorial problems,” Communications of the ACM, 25, 817–822 (1982).MATHCrossRefGoogle Scholar
  10. 10.
    J. Blazewicz, W. Cellary, and R. Slowinski, “Scheduling under resource constraints — deterministic models,” Annals of Oper. Res., 7, 383–300 (1986).Google Scholar
  11. 11.
    V. S. Tanaev and V. V. Shkurba, An Introduction to Scheduling Theory [in Russian], Nauka, Moscow (1975).Google Scholar
  12. 12.
    Yu. A. Zack, “Certain properties of scheduling theory problems,” Automat. and Remote Contr., 39, 99–107 (1978).Google Scholar
  13. 13.
    Yu. Zack and S. Rotin, Mathematisches Modell und Algorithmen der Termin- und Kapazitätsplanung, (2003).

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Europäisches Zentrum für MechatronikAachenGermany

Personalised recommendations