Advertisement

Cybernetics and Systems Analysis

, Volume 47, Issue 6, pp 973–985 | Cite as

Algorithms of parallel computations for linear algebra problems with irregularly structured matrices

  • A. N. Khimich
  • A. V. Popov
  • V. V. Polyankoa
Article

Abstract

Parallel algorithms for direct methods of analysis and solution of linear algebra problems with sparse symmetric irregularly structured matrices are considered. The performance of such algorithms is investigated. Upper estimates of the speedup and efficiency factors are obtained for a parallel algorithm for triangular decomposition of sparse matrices. Some results of numerical experiments carried out on a MIMD computer are given.

Keywords

linear algebra sparse symmetric matrix parallel algorithm efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. N. Molchanov, A. N. Khimich, A. V. Popov, et al., “On the efficient implementation of computational algorithms on MIMD computers,” Artificial Intelligence, No. 3, 175–184 (2005).Google Scholar
  2. 2.
    A. N. Khimich, I. N. Molchanov, A. V. Popov, et al., Parallel Algorithms for Solving Computational Mathematics Problems [in Russian], Naukova Dumka, Kyiv (2008).Google Scholar
  3. 3.
    A. V. Popov and A. N. Khimich, “Investigation and solution of the first fundamental problem of the theory of elasticity,” Computer Mathematics, No. 2, 105–114 (2003).Google Scholar
  4. 4.
    I. N. Molchanov, A. V. Popov, and A. N. Khimich, “Algorithm to solve the partial eigenvalue problem for large profile matrices,” Cybernetics and Systems Analysis, Vol. 28, No. 2, 281–286 (1992).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    J. A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems [Russian translation], Mir, Moscow (1984).Google Scholar
  6. 6.
    S. Pissanetsky, Sparse Matrix Technology, [Russian translation], Mir, Moscow (1988).Google Scholar
  7. 7.
    O. Osterby and Z. Zlatev, Direct Methods for Sparse Matrices [Russian translation], Mir, Moscow (1987).Google Scholar
  8. 8.
    J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems [Russian translation], Mir, Moscow (1991).Google Scholar
  9. 9.
    M. Yu. Balandin and E. P. Shurina, Methods for Solving High-Dimensional SLAEs [in Russian], Izd-vo NGTU, Novosibirsk (2000).Google Scholar
  10. 10.
    T. N. Glushakova and M. E. Eksarevskaya, Methods for Processing Sparse Matrices of Arbitrary Type [in Russian], Voronezhsk. Gos. Un-t, Voronezh (2005).Google Scholar
  11. 11.
    T. N. Glushakova and I. A. Blatova, Methods for Solving Systems with Sparse Matrices [in Russian], Voronezhsk. Gos. Un-t, Voronezh (2000).Google Scholar
  12. 12.
    J. H. Wilkinson and K. Rainsh, A Handbook of ALGOL Algorithms in Algol Language: Linear Algebra [Russian translation], Mashinostroyenie, Moscow (1976).Google Scholar
  13. 13.
    V. S. Mikhalevich, …, I. V. Sergienko, …, A. N. Khimich, et al., Numerical Methods for the Multiprocessor Computer Complex ES [in Russian], I. N. Molchanov (ed.), Izd. VVIA im. N. E. Zhukovskogo, Moscow (1986).Google Scholar
  14. 14.
  15. 15.
    I. V. Sergienko, V. S. Deineka, A. N. Khimich, et al., Investigation of Distributed Systems with Large Volumes of Connected Data with the Help of a Multiprocessor Computer Complex [in Russian], Prepr. 2005–1, V. M. Glushkov Institute of Cybernetics of NASU, Kyiv (2005).Google Scholar
  16. 16.
    A. V. Popov and A. N. Khimich, “Parallel algorithm for solving a system of linear algebraic equations with a symmetric band matrix,” Computer Mathematics, No. 2, 52–59 (2005).Google Scholar
  17. 17.
  18. 18.
    A. N. Khimich, I. N. Molchanov, V. I. Mova, et al., Numerical Software for the MIMD Computer Inparcom [in Russian], Naukova Dumka, Kyiv (2007).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • A. N. Khimich
    • 1
  • A. V. Popov
    • 1
  • V. V. Polyankoa
    • 1
  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations