Advertisement

Cybernetics and Systems Analysis

, Volume 46, Issue 6, pp 913–921 | Cite as

Mathematical modeling of some singularly perturbed processes of diffusion with relaxation

  • V. M. Bulavatsky
  • V. V. Skopetsky
Systems Analysis
  • 24 Downloads

Abstract

A nonclassical mathematical model is used to formulate a boundary-value problem of convective diffusion in a flat steady-state filtration flow with allowance for the relaxation of the diffusion process. Asymptotic approximations of the solutions are derived for predominating convective mass transfer and weak relaxation effects.

Keywords

mathematical modeling nonclassical models singularly perturbed processes mass transfer relaxation systems of partial differential equations boundary-value problems asymptotic approximations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ya. Bomba, V. M. Bulavatsky, and V. V. Skopetsky, Nonlinear Mathematical Models of Geohydrodynamic Processes [in Ukrainian], Naukova Dumka, Kyiv (2007).Google Scholar
  2. 2.
    A. Ya. Bomba, S. V. Baranovskii, and I. M. Prisyazhnyuk, Nonlinear Singularly Perturbed Convection–Diffusion Problems [in Ukrainian], NUVGP, Rivne (2008).Google Scholar
  3. 3.
    V. I. Lavrik, A. Ya. Bomba, and A. P. Vlasyuk, Asymptotic Approximation of the Solutions of Some Mass Transfer Problems in Case of Filtration in an Inhomogeneous Medium [in Russian], Prepr., Inst. Mathematics AS UkrSSR, 85–72, Kyiv (1985).Google Scholar
  4. 4.
    I. I. Lyashko, L. I. Demchenko, and G. E. Mistetskii, Numerical Solution of Heat and Mass Transfer Problems in Porous Media Naukova Dumka [in Russian], Kyiv (1991).Google Scholar
  5. 5.
    A. V. Lykov and B. M. Berkovskii, “Transfer laws in non-Newtonian fluids,” in: Heat and Mass Transfer in non-Newtonian Fluids [in Russian], Energiya, Moscow (1968), pp. 5–14.Google Scholar
  6. 6.
    O. Yu. Dinariev and O. V. Nikolaev, “Relaxation processes in porous materials with low permeability,” Inzh.-Fiz. Zhurn., 58, No. 1, 78–81 (1990).Google Scholar
  7. 7.
    V. M. Bulavatsky, Yu. G. Krivonos, and V. V. Skopetsky, Nonclassical Mathematical Models of Heat and Mass Transfer [in Ukrainian], Naukova Dumka, Kyiv (2005).Google Scholar
  8. 8.
    M. I. Vishik and L. Ya. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter,” Uspekhi Mat. Nauk, 12, Issue 5, 3–122 (1957).MATHMathSciNetGoogle Scholar
  9. 9.
    A. B. Vasil’eva and V. F. Butuzov, Asymptotic Methods in Singular Perturbation Theory [in Russian], Vyssh. Shk., Moscow (1990).Google Scholar
  10. 10.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1972).Google Scholar
  11. 11.
    V. A. Ditkin and A. P. Prudnikov, Integral Transformations and Operational Calculus [in Russian], Nauka, Moscow (1974).Google Scholar
  12. 12.
    E. I. Kartashov, Analytical Methods in Heat Conductivity of Solids [in Russian], Vyssh. Shk., Moscow (1979).Google Scholar
  13. 13.
    V. M. Bulavatsky and V. V. Skopetskii, “Generalized mathematical model of the dynamics of consolidation processes with relaxation,” Cybern. Syst. Analysis, 44, No. 5, 646–654 (2008).MATHCrossRefGoogle Scholar
  14. 14.
    N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods [in Russian], Nauka, Moscow (1987).MATHGoogle Scholar
  15. 15.
    A. A. Samarskii and A. V. Gulin, Numerical Methods of Mathematical Physics [in Russian], Nauch. Mir, Moscow (2003).Google Scholar
  16. 16.
    A. V. Lykov, Heat and Mass Transfer [in Russian], Energiya, Moscow (1978).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations