Cybernetics and Systems Analysis

, Volume 46, Issue 5, pp 793–802 | Cite as

Packing n-dimensional parallelepipeds with the feasibility of changing their orthogonal orientation in an n-dimensional parallelepiped

  • I. V. Grebennik
  • A. V. Pankratov
  • A. M. Chugay
  • A. V. Baranov


A mathematical model is constructed and a method is developed for the solution of the packing problem for n-dimensional parallelepipeds with the feasibility of changing their orthogonal orientation in an n-dimensional parallelepiped. To search for an approximation to the global minimum, a combination of the sequentially-single placement method and a modification of the decremental neighborhood method is used. The offered approach contributes to the improvement of the results of packing oriented n-dimensional parallelepipeds.


mathematical modeling optimization packing n-dimensional parallelepiped Φ-function NP-difficult problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. G. Stoyan and S. V. Yakovlev, Mathematical Models and Optimization Methods of Geometric Design [in Russian], Naukova Dumka, Kiev (1986).Google Scholar
  2. 2.
    H. Dyckhoff and U. Finke, Cutting and Packing in Production and Distribution, Physica-Verlag, Berlin (1992).Google Scholar
  3. 3.
    E. Hopper and B. C. H. Turton, A review of the application of meta-heuristic algorithms to 2d regular and irregular strip packing problems, Artificial Intelligence Review, No. 16, 257–300 (2001).Google Scholar
  4. 4.
    M. Berger, M. Schruder, and K-H. Kufer, A constraint programming approach for the two-dimensional rectangular packing problem with orthogonal orientation, in: Proc. Intern. Conf. Oper. Res. 2008, OR, and Global Business, Augsburg, Germany (2008), p. 194.Google Scholar
  5. 5.
    N. Lesh, J. Marks, A. McMahon, and M. Mitzenmacher, New heuristic and interactive approaches to 2d rectangular strip packing, J. Exp. Algorithmics, 10, 1–18 (2005).CrossRefMathSciNetGoogle Scholar
  6. 6.
    F. Eisenbrand, S. Funke, A. Karrenbauer, J. Reichel, and E. Schomer, Packing a trunk - now with a twist! in: Proc. SPM 2005 ACM Symposium on Solid and Physical Modeling (June 2005), New York, USA (2005), pp. 197–206.Google Scholar
  7. 7.
    L. Lins, S. Lins, and R. Morabito, An n-tet graph approach for non-guillotine packing of n-dimensional boxes into an n-container, Europ. J. of Oper. Res., No. 141, 421–439 (2002).Google Scholar
  8. 8.
    N. I. Gil and M. S. Sofronova, Solution of problems of packing n-dimensional parallelepipeds with a view to optimizing execution of works at the machine-building enterprises, Problemy Mashinostroeniya, 8, No. 4, 55–66 (2005).Google Scholar
  9. 9.
    Yu. G. Stoyan, A generalization of the function of close packing, Dokl. AN UkrSSR, No. 8, 70–74 (1980).Google Scholar
  10. 10.
    Yu. G. Stoyan, N. I. Gil, and M. S. Murav eva, The Φ-function of n-dimensional parallelepipeds, Dop. NAN Ukrainy, No. 3, 22–27 (2005).Google Scholar
  11. 11.
    H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity [Russian translation], Mir, Moscow (1985).MATHGoogle Scholar
  12. 12.
    Yu. G. Stoyan and V. Z. Sokolovskii, Solution of Some Multiextremal Problems by the Method of Contracting Neighborhoods [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  13. 13.
    I. V. Grebennik and A. V. Baranov, Solving some extremal problems on a set of compositions of permutations, Radiotekhnika, No. 149, 12–17 (2007).Google Scholar
  14. 14.
    M. I. Gil and M. S. Sofronova, The Computer Program Packing of n-parallelepipeds, Certificate of Copyright Registration, No. 14099 (September 9, 2005), State Department of Intellectual Property (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • I. V. Grebennik
    • 1
  • A. V. Pankratov
    • 2
  • A. M. Chugay
    • 2
  • A. V. Baranov
    • 1
  1. 1.Kharkov National University of Radio ElectronicsKharkovUkraine
  2. 2.A. N. Podgorny Institute for Mechanical Engineering ProblemsNational Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations