Cybernetics and Systems Analysis

, Volume 46, Issue 5, pp 744–754 | Cite as

Solving the maxcut problem by the global equilibrium search

  • V. P. Shylo
  • O. V. Shylo


The authors propose an approach to the solution of the maxcut problem. It is based on the global equilibrium search method, which is currently one of the most efficient discrete programming methods. The efficiency of the proposed algorithm is analyzed.


cutset approximate methods global equilibrium search computational experiment algorithm efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Barahona, M. Grotschel, M. Junger, and G. Reinelt, “An application of combinatorial optimization to statistical physics and circuit layout design,” Oper. Res., 36, 493–513 (1988).MATHCrossRefGoogle Scholar
  2. 2.
    K. C. Chang and D.H.-C. Du, “Efficient algorithms for layer assignment problem,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 6, 67–78 (1987).CrossRefGoogle Scholar
  3. 3.
    S. Poljak and Z. Tuza, “Maximum cuts and large bipartite subgraphs,” DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 20, 181–244 (1995).MathSciNetGoogle Scholar
  4. 4.
    V. P. Shilo, “The method of global equilibrium search,” Cybern. Syst. Analysis, 35, No. 1, 68–74 (1999).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    I. V. Sergienko and V. P. Shilo, Discrete Optimization Problems: Challenges, Solution Methods, and Studies [in Russian], Naukova Dumka, Kyiv (2003).Google Scholar
  6. 6.
    I. V. Sergienko and V. P. Shylo, “Problems of discrete optimization: Challenges and main approaches to solve them,” Cybern. Syst. Analysis, 42, No. 4, 465–482 (2006).MATHCrossRefGoogle Scholar
  7. 7.
    P. Pardalos, O. Prokopyev, O. Shylo, and V. Shylo, “Global equilibrium search applied to the unconstrained binary quadratic optimization problem,” Optim. Methods and Software, 23, 129–140 (2008).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    O. Prokopyev, O. Shylo, and V. Shylo, “Solving weighted MAX-SAT via global equilibrium search,” Oper. Res. Lett., 36, No. 4, 434-438 (2008).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Burer, R. D. C. Monteiro, and Y. Zhang, “Rank-two relaxation heuristics for MAX-CUT and other binary quadratic programs,” SIAM J. Optim., 12, 503–521 (2002).CrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Festa, P. M. Pardalos, M. G. C. Resende, and C. C. Ribeiro, “Randomized heuristics for the maxcut problem,” Optim. Methods and Software, 17, 1033–1058 (2002).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    G. Palubeckis and V. Krivickiene, “Application of multistart tabu search to the Max-Cut problem,” in: Information Technology and Control, 2(31), Technologija, Kaunas (2004), pp. 29–35.Google Scholar
  12. 12.
    M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” J. ACM, 42, 1115–1145 (1995).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    R. Marti, A. Duarte, and M. Laguna, “Advanced scatter search for the Max-Cut problem, INFORMS J. Computing, 21, No. 1, 26–38 (2009).CrossRefMathSciNetGoogle Scholar
  14. 14.
    C. Helmberg and F. Rendl, “A spectral bundle method for semidefinite programming,” SIAM J. Optim., 10, 673–696 (2000).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of UkraineKyivUkraine
  2. 2.University of PittsburghPittsburghUSA

Personalised recommendations