Cybernetics and Systems Analysis

, Volume 46, Issue 1, pp 34–50 | Cite as

Methods to predict protein spatial structure

  • I. V. Sergienko
  • V. V. Ryazanov
  • B. A. Biletskyy
  • A. V. Byts
  • A. M. Gupal
  • S. S. Rzhepeskyy

Modern methods of predicting protein spatial structure are reviewed. Numerical results of predicting the secondary structure of protein on the basis of Bayesian recognition procedures on nonstationary Markov chains are discussed. Complementary principles of encoding genetic information in DNA and proteins are presented.


recognition biophysical filters contact maps Bayesian procedure Markov chain protein folding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ginalski, N. V. Grishin, A. Godzik, and L. Rychlewski, “Practical lessons from protein structure prediction,” Nucleic Acids Res., 33, 1874–1891 (2005).CrossRefGoogle Scholar
  2. 2.
    T. Lazaridis and M. Karplus, “Effective energy functions for protein structure prediction,” Current Opinion in Structural Biology, 10, 139–245 (2000).CrossRefGoogle Scholar
  3. 3.
    F. Boas and P. Harbury, “Potential energy functions for protein design,” Current Opinion in Structural Biology, 17, 199–204 (2007).CrossRefGoogle Scholar
  4. 4.
    P. Narang, K. Bhushan, S. Bose, and B. Jayaram, “A computational pathway for bracketing native-like structures for small alpha helical globular proteins,” Phys. Chem. Chem. Phys., 7, 2364–2375 (2005).CrossRefGoogle Scholar
  5. 5.
    Madhu Smitha, Abhijit Mitra, and Harjinder Singh, “Real valued genetic algorithm based approach for protein structure prediction — role of biophysical filters for reduction of conformational search space,” in: Proc. 3rd IAPR Intern. Conf. on Pattern Recognition in Bioinformatics PRIB, Oct. 15–17, 2008, Novotel St Kilda, Melbourne, Australia (2008).Google Scholar
  6. 6.
    M. Vassura, L. Margara, P. Di Lena, et al., “Reconstruction of 3D structures from protein contact maps,” in: IEEE/ACM Trans. on Comput. Biology and Bioinformatics, 5(3), 357–367 (2008).CrossRefGoogle Scholar
  7. 7.
    G. Pollastri and P. Baldi, “Prediction of contact maps by GIOHMMs and recurrent neural networks using lateral propagation from all four cardinal corners,” Bioinformatics, 18, 62–70 (2002).Google Scholar
  8. 8.
    J. Cheng and P. Baldi, “Improved residue contact prediction using support vector machines and a large feature set,” BMC Bioinformatics, 8, 1–9 (2007).CrossRefGoogle Scholar
  9. 9.
    I. V. Sergienko and A.M. Gupal, “Statistical analysis of genome,” Cytology and Genetics, No. 4, 76–81 (2004).Google Scholar
  10. 10.
    A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimal decoding algorithm,” IEEE Trans. Informat. Theory, IT-13, 260–269 (1967).Google Scholar
  11. 11.
    L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite state Markov chains,” Ann. Math. Statist., 37, 1554–1563 (1996).CrossRefMathSciNetGoogle Scholar
  12. 12.
    S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition,” Bell Syst. Tech. J., 62, 1035–1074 (1983).MATHMathSciNetGoogle Scholar
  13. 13.
    J. D. Lafferty, A. Mc Callum, and F. C. N. Pereira, “Conditional random fields: probabilistic models for segmenting and labeling sequence data,” in: Proc. 18th Intern. Conf. on Machine Learning (ICML 2001), Morgan Kaufmann Publ., New York (2001), pp. 282–289.Google Scholar
  14. 14.
    “The international human genom sequencing consortium,” Nature, 431, 931–945 (2004).Google Scholar
  15. 15.
    A. M. Gupal and I. V. Sergienko, Îptimal Pattern Recognition Procedures [in Russian], Naukova Dumka, Kyiv (2008).Google Scholar
  16. 16.
    A. M. Gupal and A. A. Vagis, “Complementarity principles of bases in DNA chromosomes,” J. Autom. Inform. Sci., 37, Issue 10, 24–28 (2005).CrossRefGoogle Scholar
  17. 17.
    I. V Sergienko, A. M. Gupal, and A. A. Vagis, “Complementary principles of bases recoding along one chain of DNA,” Cytology and Genetics, No. 6, 71–75 (2005).Google Scholar
  18. 18.
    T. W. Anderson and L. A. Goodman, “Statistical inference about Markov chains,” Ann. Math. Statistics, 28, 89–110 (1957).MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Â. A. Beletskiy, S. V. Vasilyev, and A. M. Gupal, “Ðrediction of secondary structure of proteins on the basis of Bayesian recognition procedures,” J. Autom. Inform. Sci., 39, Issue 2, 1–9 (2007)CrossRefGoogle Scholar
  20. 20.
    I. V. Sergienko, B. A. Beletskii, S. V. Vasil’ev, and A. M. Gupal, “Ðredicting protein secondary structure based on Bayesian classification procedures on Markov chains,” Cybern. Syst. Analysis, 43, No. 2, 208–212 (2007).MATHCrossRefGoogle Scholar
  21. 21.
    B. A. Beletskiy, A. A. Vagis, S. V. Vasilyev, and A. M. Gupal “Protein Secondary Structure Recognition Procedure,” J. Autom. Inform. Sci., 39, Issue 8, 65–71 (2007). CrossRefGoogle Scholar
  22. 22.
    A. Thorda, Protein Threading, Univ. of Hambourg, Hambourg (2003) (
  23. 23.
    L. J. Mc Guffin, “Protein fold recognition and threading in computational structural biology,” World Scientific, 37–60 (2008).Google Scholar
  24. 24.
  25. 25.
  26. 26.
    J. Moult, F. Krzysztof, A. Zemla, and T. Hubbard, “Critical assessment of methods of protein structure prediction (CASP) — Round V,” Proteins, 53, 334–339 (2003).CrossRefGoogle Scholar
  27. 27.
    A. Kryshtafovych, F. Krzysztof, and J. Moult, “Progress from CASP6 to CASP7,” Proteins, 69, 194–207 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.A. A. Dorodnitsyn Computing Center of the Russian Academy of SciencesMoscowRussia

Personalised recommendations