Classification of applied methods of combinatorial optimization

  • I. V. Sergienko
  • L. F. Hulianytskyi
  • S. I. Sirenko
Systems Analysis

The paper reviews most popular approaches to the development of applied methods of combinatorial optimization. A number of characteristics and criteria are proposed that underlie the classification of approximate algorithms. The classification continues the previous investigations in combinatorial optimization and allows determining key components of computational schemes used in constructing efficient hybrid metaheuristics.


combinatorial optimization classification of methods approximate algorithms metaheuristics hyperheuristics 


  1. 1.
    T. Stützle, “Local search algorithms for combinatorial problems — analysis, improvements and new applications,” PhD. Thesis, Technische Univ. Darmstadt, Darmstadt (1998).Google Scholar
  2. 2.
    R. J. M. Vaessens, E. H. L. Aarts, and J. K. Lenstra, “A local search template,” Comput. Oper. Res., 25, No. 11, 969–979 (1998).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Birattari, L. Paquete, T. Stützle, and K. Varrentrapp, “Classification of metaheuristics and design of experiments for the analysis of components,” Techn. Rep., N AIDA-01-05, Techn. Univ. Darmstadt, Darmstadt (2001).Google Scholar
  4. 4.
    C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: overview and conceptual comparison,” ACM Computing Surveys, 35, No. 3, 268–308 (2003).CrossRefGoogle Scholar
  5. 5.
    M. Gendreau and J.-Y. Potvin, “Metaheuristics in combinatorial optimization,” Ann. Oper. Res., 140, No. 1, 189–213 (2005).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    V. K. Leont’ev, “Discrete optimization,” J. Comp. Math. Math. Phys., 47, No. 2, 328–340 (2007).CrossRefMathSciNetGoogle Scholar
  7. 7.
    H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and Applications, Morgan Kaufmann Publ., San Francisco (2005).MATHGoogle Scholar
  8. 8.
    G. R. Raidl, “A unified view on hybrid metaheuristics,” in: Lect. Notes Comput. Sci., 4030, Springer-Verlag, Berlin (2006), pp. 1–12.CrossRefGoogle Scholar
  9. 9.
    L. F. Gulyanitskii and I. V. Sergienko, “Metaheuristic downhill simplex method in combinatorial optimization,” Cybern. Syst. Analysis, 43, No. 6, 822–829 (2007).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Englewood Cliffs, Prentice Hall (1982).MATHGoogle Scholar
  11. 11.
    I. V. Sergienko, Mathematical Models and Methods to Solve Discrete Optimization Problems [in Russian], Naukova Dumka, Kyiv (1988).Google Scholar
  12. 12.
    V. S. Mikhalevich and A. I. Kuksa, Methods of Sequential Optimization in Discrete Network Problems of Optimal Resource Allocation [in Russian], Nauka, Moscow (1983).Google Scholar
  13. 13.
    A. A. Pavlov and E. B. Misyura, “Efficient accurate PDS-algorithm to solve a total delay problem for one device,” Systemni Doslidzh. Inform. Tekhnol., No. 4, 30–59 (2004).Google Scholar
  14. 14.
    P. Pardalos and M. G. C. Resende (eds.), Handbook of Applied Optimization, Oxford Univ. Press, Oxford (2002).MATHGoogle Scholar
  15. 15.
    T. F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, Boca Raton (FL) (2007).MATHGoogle Scholar
  16. 16.
    I. V. Sergienko and M. F. Kaspshitskaya, Models and Methods for Computer Solution of Combinatorial Optimization Problems [in Russian], Naukova Dumka, Kyiv (1981).Google Scholar
  17. 17.
    I. V. Sergienko and V. P. Shilo, Discrete Optimization Problems [in Russian], Naukova Dumka, Kyiv (2003).Google Scholar
  18. 18.
    K. A. De Jong, Evolutionary Computation: A Unified Approach, MIT Press, Cambridge (MA) (2006).MATHGoogle Scholar
  19. 19.
    G. Leguizamon, C. Blum, and E. Alba. “Evolutionary computation,” in: T.F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, Boca Raton (FL) (2007), pp. 372–386.Google Scholar
  20. 20.
    J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, San Francisco (CA) (2001).Google Scholar
  21. 21.
    S. Khuller, B. Raghavachari, and N. E. Young, “Greedy methods,” in: T.F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, Boca Raton (FL) (2007), pp. 67–80.Google Scholar
  22. 22.
    I. V. Sergienko, “A method to solve extremum problems,” Avtomatika, No. 5, 15–21 (1964).Google Scholar
  23. 23.
    Yu. A. Kochetov, “Computational bounds for local search in combinatorial optimization,” J. Comp. Math. Math. Phys., 48, No. 5, 747–763 (2008).CrossRefMathSciNetGoogle Scholar
  24. 24.
    L. F. Hulianytskyi and A. N. Khodzinskii, “Features of the implementation of branch-and-bound algorithm and descent-vector method in VEKTOR–1B,” in: Computational Aspects in Application Software Packages [in Russian], Inst. Cybern. AS USSR, Kyiv (1979), pp. 25–30.Google Scholar
  25. 25.
    N. Mladenović and P. Hansen, “Variable neighbourhood search,” Comput. Oper. Res., No. 24, 1097–1100 (1997).Google Scholar
  26. 26.
    P. Hansen, N. Mladenovic, and J. A. Moreno-Pérez, “Variable neighbourhood search: methods and applications,” Quarterly J. Oper. Res., 6, No. 4, 319–360 (2008).MATHCrossRefGoogle Scholar
  27. 27.
    C. Voudouris and E. P. K. Tsang, “Guided local search,” in: F. Glover (ed.), Handbook of Metaheuristics, Kluwer Acad. Publ., Norwell (MA) (2003), pp. 185–218.Google Scholar
  28. 28.
    B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,” Bell System Techn. J., No. 49, 291–307 (1970).Google Scholar
  29. 29.
    S. Kirkpatrik, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, 220, No. 4598, 671–680 (1983).CrossRefMathSciNetGoogle Scholar
  30. 30.
    E. Aarts, J. Korst, and W. Michiels, “Simulated annealing,” in: T. F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, Boca Raton (FL) (2007), pp. 387–397.Google Scholar
  31. 31.
    L. F. Hulianytskyi, “Using algorithms of fast probabilistic modeling to solve combinatorial optimization problems,” in: Computational Mathematics [in Russian], V. M. Glushkov Inst. of Cybernetics NASU, No. 1, 64–72 (2004).Google Scholar
  32. 32.
    H. R. Lourenço, O. Martin, and T. Stützle, “Iterated local search,” in: F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics, Kluwer Acad. Publ., Norwell (MA) (2002), pp. 321–353.Google Scholar
  33. 33.
    F. Glover, “Future paths for integer programming and links to artificial intelligence,” Comput. Oper. Res., No. 5, 533–549 (1986).Google Scholar
  34. 34.
    F. Glover and M. Laguna, Tabu Search, Kluwer Acad. Publ., Norwell (MA) (1997).MATHGoogle Scholar
  35. 35.
    A. Das and B. K. Chakrabarti (eds.), Quantum Annealing and Related Optimization Methods, Lect. Notes Physics, 679, Springer, Heidelberg (2005).MATHGoogle Scholar
  36. 36.
    T. A. Feo and M. G. C. Resende, “A probabilistic heuristic for a computationally difficult set covering problem,” Oper. Res. Letters, 8, No. 2, 67–71 (1989).MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    L. Pitsoulis and M. G. C. Resende, “Greedy randomized adaptive search procedures,” in: P.M. Pardalos and M. G. C. Resende (eds.), Handbook of Applied Optimization, Oxford Univ. Press, Oxford (2002), pp. 168–181.Google Scholar
  38. 38.
    Yu. G. Stoyan and S. V. Yakovlev, Mathematical Models and Optimization Methods of Geometric Design [in Russian], Naukova Dumka, Kyiv (1986).Google Scholar
  39. 39.
    J. H. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan Press, Ann Arbor (MI) (1975).Google Scholar
  40. 40.
    P. Moscato, “On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms,” Techn. Rep., N C3P 826, California Inst. of Technology, Pasadena (CA) (1989).Google Scholar
  41. 41.
    P. Moscato and C. Cotta, “Memetic algorithms,” in: T. F. Gonzalez (ed.), Handbook of Approximation Algorithms and Metaheuristics, CRC Press, Boca Raton (FL) (2007), pp. 412–423.Google Scholar
  42. 42.
    V. Cutello and G. Nicosia, “An immunological approach to combinatorial optimization problems,” in: Lect. Notes Comput. Sci., No. 2527 (2002), pp. 361–370.Google Scholar
  43. 43.
    L. N. de Castro and J. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach, Springer, London (2002).MATHGoogle Scholar
  44. 44.
    F. Glover, M. Laguna, and R. Marti,“Scatter search and path relinking: foundations and advanced designs,” in: G. Onwubolu and B. V. Babu (eds.), New Optimization Techniques in Engineering, Springer-Verlag, Berlin (2004), pp. 87–100.Google Scholar
  45. 45.
    H. Mühlenbein and G. Paab, “From recombination of genes to the estimation of distributions. I. Binary parameters,” in: Lect. Notes Comput. Sci.: Parallel Problem Solving from Nature, No. 4 (1996), pp. 178–187.Google Scholar
  46. 46.
    P. Larrañnaga and J. A. Lozano (eds.), Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, Kluwer Acad. Publ., Boston (MA) (2001).Google Scholar
  47. 47.
    M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete optimization,” Artif. Life, 5, No. 2, 137–172 (1999).CrossRefGoogle Scholar
  48. 48.
    M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press, Cambridge (MA) (2004).MATHGoogle Scholar
  49. 49.
    R. C. Eberhart and J. Kennedy, “Particle swarm optimization,” in: Proc. IEEE Intern. Conf. on Neural Networks, 4, IEEE Service Center, Piscataway (NJ) (1995), pp. 1942–1948.Google Scholar
  50. 50.
    M. Clerc, Particle Swarm Optimization, Wiley-Interscience, Hoboken (NJ) (2006).MATHGoogle Scholar
  51. 51.
    D. Teodorovic, P. Lucic, G. Markovic, and M. D’Orco, “Bee colony optimization: principles and applications,” in: 8th Seminar on Neural Network Applications in Electrical Engineering, Belgrade, Serbia (2006), pp. 151–156.Google Scholar
  52. 52.
    K. De Meyer, S. J. Nasuto, and J. M. Bishop, “Stochastic diffusion search: partial function evaluation in swarm intelligence dynamic optimisation,” in: A. Abraham, C. Grosam, and V. Ramos (eds.), Stigmergic Optimization, Springer–Verlag, Berlin (2006), pp. 185–208.Google Scholar
  53. 53.
    L. F. Hulianytskyi, “Deformation method in discrete optimization,” Issled. Oper. ASU, No. 34, 30–33 (1989).Google Scholar
  54. 54.
    Yu. I. Zhuravlev, “Correct algebras over sets of incorrect (heuristic) algorithms,” Kibernetika, No. 4, 5–17 (1977).Google Scholar
  55. 55.
    D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu, “Rollout algorithms for combinatorial optimization,” J. Heuristics, No. 3, 245–262 (1997).Google Scholar
  56. 56.
    E. Burke, E. Hart, G. Kendall, et al., “Hyperheuristics: An emerging direction in modern search technology,” in: F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics, Kluwer Acad. Publ., Norwell (MA) (2003), pp. 457–474.Google Scholar
  57. 57.
    E. Ozcan, E. Bilgin, and E. E. Korkmaz, “A comprehensive analysis of hyper-heuristics,” Intelligent Data Analysis, 12, No. 1, 3–23 (2008).Google Scholar
  58. 58.
    L. F. Hulianytskyi, “A family of iterative discrete optimization algorithms,” in: Developing Mathematical and Engineering Tools in ACS [in Russian], IK AN USSR, Kyiv (1978), pp. 25–30.Google Scholar
  59. 59.
    F. Glover, “Ejection chains, reference structures and alternating path methods for traveling salesman problems,” Discrete Appl. Math., No. 65, 223–253 (1996).Google Scholar
  60. 60.
    P. Morris, “The breakout method for escaping from local minima,” in: Proc. 11th Conf. on Artif. Intelligence, MIT Press, Cambridge (MA) (1993), pp. 40–45.Google Scholar
  61. 61.
    R. Battiti and M. Brunato, “Reactive search: Machine learning for memory-based heuristics,” Techn. Rep., N DIT-05-058, Univ. di Trento, Trento (2005).Google Scholar
  62. 62.
    R. Battiti and R. Tecchiolli, “The reactive tabu search,” ORSA J. Computing, 6, No. 2, 126–140 (1994).MATHGoogle Scholar
  63. 63.
    Y.-S. Ong, M.-H. Lim, N. Zhu, and K.-W. Wong, “Classification of adaptive memetic algorithms: A comparative study,” IEEE Trans. Systems, Man, and Cybernetics. Part B, Cybernetics, 36, No. 1, 141–152 (2006).CrossRefGoogle Scholar
  64. 64.
    M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo, “Model-based search for combinatorial optimization: A critical survey,” Ann. Oper. Res., No. 131, 373–395 (2004).Google Scholar
  65. 65.
    R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation, and Machine Learning, Springer-Verlag, New York (2004).MATHGoogle Scholar
  66. 66.
    L. F. Hulianytskyi, “Developing cooperative metaheuristics,” in: Abstr. Int. Conf. “Problems of Decision Making under Uncertainties (PDMU–2009)” (April 27-30, 2009, Skhidnytsia, Ukraine), Kyiv (2009), pp. 90–91.Google Scholar
  67. 67.
    E.-G. Talbi (ed.), Parallel Combinatorial Optimization, Wiley-Interscience, Hoboken (NJ) (2006).Google Scholar
  68. 68.
    E. Alba (ed.), Parallel Metaheuristics: A New Class of Algorithms, Wiley-Interscience, Hoboken (NJ) (2006).Google Scholar
  69. 69.
    C. Choi and J. Lee, “Chaotic local search algorithm,” Artif. Life Robotics, 2, No. 1, 41–47 (1998).CrossRefGoogle Scholar
  70. 70.
    S. Boettcher, A. G. Percus, “Extremal optimization: Methods derived from co-evolution,” in: Proc. Genetic and Evolutionary Computation Conf. (GECCO) (1999), pp. 825–832.Google Scholar
  71. 71.
    C. Bourjot, V. Chevrier, and V. Thomas, “A new swarm mechanism based on social spiders colonies: from web weaving to region detection,” Web Intelligence and Agent Systems, 1, No. 1, 47–64 (2003).Google Scholar
  72. 72.
    H. Wakuya, “A new search method for combinatorial optimization problem inspired by the spin glass system,” Intern. Congress Series, No. 1291, 201–204 (2006).Google Scholar
  73. 73.
    P. Cortés, J. M. Garci’a, J. Muñnuzuri, and L. Onieva, “Viral systems: A new bio-inspired optimisation approach,” Comput. Oper. Res., No. 35, 2840–2860 (2008).Google Scholar
  74. 74.
    M. G. H. Omran and M. Mahdavi, “Global-best harmony search,” Appl. Math. Comput., No. 198, 643–656 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • I. V. Sergienko
    • 1
  • L. F. Hulianytskyi
    • 1
  • S. I. Sirenko
    • 1
  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations