Cybernetics and Systems Analysis

, Volume 45, Issue 4, pp 605–612 | Cite as

Using singular extremals to obtain new equations of motion and unknown constants


The paper uses the concept of a singular extremal in the classical dimensional analysis, which considerably extends the capabilities of this analysis and allows finding the unknown constants and new motion equations.


singular extremals differential equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. E. Bryson and Yu-Chi Ho, Applied Optimal Control: Optimization, Estimation, and Control, Hemisphere, Washington, DC (1975).Google Scholar
  2. 2.
    E. R. Smol’yakov, Theory of Conflict Equilibria [in Russian], Editorial URSS, Moscow (2005).Google Scholar
  3. 3.
    E. Buckingham, “On physically similar systems: Illustrations of the use of dimensional equations,” Phys. Rev., 4, 345–376 (1914).CrossRefGoogle Scholar
  4. 4.
    P. W. Bridgeman, Dimensional Analysis, Yale University Press, New Haven, CT (1931).Google Scholar
  5. 5.
    L. A. Sena, Units of Physical Quantities and their Dimensions [in Russian], Mir, Moscow (1972).Google Scholar
  6. 6.
    E. R. Smol’yakov, “Singular extremals in dimensional analysis,” Dokl. RAN, 421, No. 5, 602–606 (2008).Google Scholar
  7. 7.
    E. R. Smol’yakov, “Nonlinear principles of motion and substantiation of the motion of inertioids,” Dokl. RAN, 393, No. 6, 770–775 (2003).MathSciNetGoogle Scholar
  8. 8.
    E. R. Smol’yakov, “Motion integrals in dual space,” Dokl. RAN, 414, No. 459–463 (2007).Google Scholar
  9. 9.
    D. I. Blokhitsev, Fundamentals of Quantum Mechanics [in Russian], Nauka, Moscow (1976).Google Scholar
  10. 10.
    F. W. Bopp, Kerne, Hadronen und Elementarteilchen, Teubner, Stuttgart (1989).Google Scholar
  11. 11.
    V. P. Glushko (ed.), Cosmonautics. A Small Encyclopedia [in Russian], Sovetskaya Entsyklopedia, Moscow (1970).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations