Cybernetics and Systems Analysis

, Volume 45, Issue 1, pp 69–75 | Cite as

Estimating the number of latin rectangles by the fast simulation method

  • N. Yu. Kuznetsov
Systems Analysis

A fast simulation method is proposed to estimate the number of Latin rectangles and squares. Numerous examples demonstrate the high accuracy of the method. The number of Latin squares of order n = 20 is estimated with a relative error of 5% and a confidence level of 0.99. Statistical lower bounds for the maximum number of transversals over all Latin squares of order n = 20 are obtained.


Latin rectangle Latin square transversal fast simulation method unbiased estimate sample variance relative error 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Colbourn, “The complexity of completing partial Latin squares,” Discrete Appl. Math., 8, 25–30 (1984).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    K. A. Rybnikov, An Introduction to Combinatorial Analysis [in Russian], Izd. Mosk. Univ., Moscow (1985).Google Scholar
  3. 3.
    V. N. Sachkov, An Introduction to Combinatorial Methods of Discrete Mathematics [in Russian], Nauka, Moscow (1982).Google Scholar
  4. 4.
  5. 5.
    B. D. McKay, J.C. McLeod, and I. M. Wanless, “The number of transversals in a Latin square,” Des. Codes Crypt., 40, 269–284 (2006).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    S. M. Ermakov, The Monte Carlo Method and Related Problems [in Russian], Nauka, Moscow (1975).Google Scholar
  7. 7.
    K. Yamamoto, “On the asymptotic number of Latin rectangles,” Jap. J. Math., 21, 113–119 (1951).MATHMathSciNetGoogle Scholar
  8. 8.
    C. Cooper and I. N. Kovalenko, “An upper bound for the number of complete mappings,” Teor. Veroyatn. Mat. Statist., 53, 69–75 (1995).MATHGoogle Scholar
  9. 9.
    I. N. Kovalenko, “Upper bound on the number of complete maps,” Cybern. Syst. Analysis, 32, No. 1, 81–85 (1996).MathSciNetGoogle Scholar
  10. 10.
    A. A. Levitskaya, “A combinatorial problem in a class of permutations over a ring Z n of odd modulo n residuals,” Probl. Upravl. Inform., No. 5, 99–108 (1996).Google Scholar
  11. 11.
    C. Cooper, R. Gilchrist, I. N. Kovalenko, and D. Novakovic, “Estimation of the number of “ good” permutations with applications to cryptography,” Cybern. Syst. Analysis, 35, No. 5, 688–693 (1999).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    N. Yu. Kuznetsov, “Estimating the number of good permutations by a modified fast simulation method, ” Cybern. Syst. Analysis, 44, No. 4, 547–554 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations