Advertisement

Cybernetics and Systems Analysis

, Volume 44, Issue 3, pp 348–356 | Cite as

Adaptive sampling in measuring traffic parameters in a computer network using a fuzzy regulator and a neural network

  • J. Giertl
  • J. Baca
  • F. Jakab
  • R. Andoga
Article

Abstract

Adaptive sampling using a neural network and a fuzzy regulator is described as applied to computer network traffics. The objective of this approach is to maximally reduce the amount of data to be processed with preservation of acceptable measurement accuracy. The results of experimental verification of sampling efficiency are also presented that are based on the traffic data archive of a real computer network.

Keywords

adaptive sampling fuzzy regulator neural network service quality level 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Sadasivan, N. Brownlee, B. Claise, and J. Quittek, Architecture for IP Flow Information Export, IPFIX Working Group, Internet Draft (September 2006) (2006).Google Scholar
  2. 2.
    T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall, Sampling and Filtering Techniques for IP Packet Sampling, PSAMP Working Group (2007), Internet Draft (June 2007).Google Scholar
  3. 3.
    T. Zseby, E. Boschi, N. Brownlee, and B. Claise, IPFIX Applicability, IPFIX Working Group, Internet Draft (June 2007) (2007).Google Scholar
  4. 4.
    P. Čáky, M. Klimo, P. Palúch, and O. Škvarek, “End-to-end VoIP quality measurement,” Acta Electrotechnica et Informatica, 6, No. 1, 47–51 (2006).Google Scholar
  5. 5.
    J. Uramová, “Impact of network state information on QoS,” Acta Electrotechnica et Informatica, 6, No. 1, 43–46 (2006).Google Scholar
  6. 6.
    H. Mostafa and P. Čičák, “Performance simulation of a Mobile-IP extension for optimized roaming service,” Acta Electrotechnica et Informatica, 6, No. 1, 11–19 (2006).Google Scholar
  7. 7.
    J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer, Information Model for IP Flow Information Export, IPFIX Working Group, Internet Draft (February 2007) (2007).Google Scholar
  8. 8.
    B. Claise, Specification of the IPFIX Protocol for the Exchange of IP Traffic Flow Information, IPFIX Working Group, Internet Draft (November 2006) (2006).Google Scholar
  9. 9.
    M. Hronský, F. Jakab, M. Potocký, R. Jakab, and J. Giertl, “Sampling algorithms for nonintrusive measurement in network-oriented educational systems,” in: 4th International Conference on Emerging e-learning Technologies and Applications (ICETA 2005), Košice, Slovak Republic (September 13–14, 2005), elfa, s.r.o. (2005), pp. 165–171.Google Scholar
  10. 10.
    E. Hernandez, M. Chidester, and A. George, “Adaptive sampling for network management,” Journal of Network and Systems Management, 9, No. 4, 409–434 (2001).CrossRefGoogle Scholar
  11. 11.
    T. Kohonen, Self-Organizing Maps, Springer Series in Information Sciences, Springer, Berlin (1995).Google Scholar
  12. 12.
    J. Giertl, “Optimization of measurement and evaluation of operational parameters in computer networks,” Ph. D. Thesis, Technická univerzita v Košiciach, Košice (2006).Google Scholar
  13. 13.
    J. Giertl, F. Jakab, J. Bača, R. Andoga, and M. Mirilovič, “Contribution to adaptive sampling of QoS parameters in computer networks,” Acta Electrotechnica et Informatica, 6, No. 1, 52–59 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Technical universityKosiceSlovakia

Personalised recommendations