Skip to main content
Log in

Rational approximation of distributed parameter systems

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

A new approach to the construction of approximate models is proposed and justified for a wide class of distributed and lumped parameter systems. The approach is based on the iterative identification method that is especially efficient under uncertainty and errors in available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Sergienko and V. S. Deineka, “Solution of inverse boundary-value problems for multicomponent parabolic distributed systems,” Cybern. Syst. Analysis, 43, No. 4, 507–526 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  2. I. V. Sergienko and V. S. Deineka, “Solving combined inverse problems for multicomponent parabolic distributed systems,” Cybern. Syst. Analysis, 43, No. 5, 655–674 (2007).

    Article  MATH  Google Scholar 

  3. A. G. Butkovskii, “A structural method for distributed parameter systems,” Avtom. Telemekh., No. 5 (1975).

  4. A. G. Butkovskii, Characteristics of Distributed Parameter Systems [in Russian], Fizmatgiz, Nauka, Moscow (1979).

    Google Scholar 

  5. Yu. N. Andreev, Control of Finite-Dimensional Linear Objects [in Russian], Fizmatgiz, Nauka, Moscow (1979).

    Google Scholar 

  6. K. Glover, R. F. Curtain, and J. R. Partington, “Realization and approximation of linear infinite-dimensional systems with error bounds,” SIAM J. Contr. Optimiz., 26, No. 4, 863–898 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  7. R. R. Coifman and R. Rochberg, “Representation theorems for holomorhic and harmonic functions in L p,” Asterisque, 77, 11–66 (1980).

    MATH  MathSciNet  Google Scholar 

  8. V. M. Adamyan, D. Z. Arov, and M. G. Krein, “Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem,” Mat. Zhurn., 15, 31–73 (1971).

    Google Scholar 

  9. P. M. Makila, “On identification of stable systems and optimal approximation,” Automatica, 27, No. 4, 663–676 (1991).

    Article  MathSciNet  Google Scholar 

  10. T. Kailath, Linear Systems, Prentice-Hall, N.J. (1980).

    MATH  Google Scholar 

  11. B. P. Demidovich, Lectures on Mathematical Theory of Stability [in Russian], Fizmatgiz, Nauka, Moscow (1967).

    Google Scholar 

  12. K. Chaudrasekharan, Classical Fourier Transforms, Springer, Berlin (1989).

    Google Scholar 

  13. P. Clement, “Application of generalized Laguerre functions,” Matematics and Computers in Simulation, 27, 541–550 (1985).

    Article  MathSciNet  Google Scholar 

  14. P. M. Makila, “Approximation of stable systems by Laguerre filters,” Automatica, 26, No. 2, 333–345 (1990).

    Article  MathSciNet  Google Scholar 

  15. Bo Wahlberg, “Laguerre and Kautz models,” in: Prepr. 10th IFAC Symp. on System Identification, SYSID’94, Copenhagen, Denmark, 3 (1994), pp. 1–12.

    Google Scholar 

  16. P. S. C. Heuberger, M. J. Van den Hof, and O. H. Bosgra, “A generalized orthonormal basis for linear dynamic systems,” IEEE Trans. Automat. Contr., 451–465 (1995).

  17. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in a Hilbert Space [in Russian], Fizmatgiz, Nauka, Moscow (1965).

    Google Scholar 

  18. A. G. Aleksandrov, “Finite-frequency identification: A multi-dimensional object,” in: Proc. Intern. Conf. on Control Problems [in Russian], Selected Works of V. A. Trapeznikov ICP, RAS, 1 (1999), pp. 15–28.

  19. Yu. F. Orlov, “Frequency parameter identification,” Dif. Uravn., 42, No. 3, 425–428 (2006).

    MathSciNet  Google Scholar 

  20. V. F. Gubarev, “Selective identification of submodels of dynamic systems,” in: Proc. Intern. Conf. on Control Problems and Applications (Engineering, Production, Economy) [in Russian], Inst. of Math. NAS of Belarus, 2 (2005), pp. 41–50.

  21. A. G. Aleksandrov, “A method of frequency parameters,” Avtom. Telemekh., 50, No. 12, 3–15 (1989).

    Google Scholar 

  22. V. F. Gubarev and P. A. Tigunov, “On peculiarities of identifications of multidimensional continuous systems by data with bounded indeterminacy,” Probl. Contr. Comp. Sci., 38, No. 4, 23–39 (2006).

    Google Scholar 

  23. V. F. Gubarev, “Method of iterative identification of multidimensional systems by uncertain data. Part I. Theoretical Aspects,” Probl. Contr. Comp. Sci., No. 9, 38, 12–28 (2006).

    Google Scholar 

  24. V. F. Gubarev and P. A. Tigunov, “Method of iterative identification of multidimensional systems by uncertain data. Part II. Algorithms,” Probl. Contr. Comp. Sci., 39, No. 4, 1–11 (2007).

    Google Scholar 

  25. B. M. Ninness and G. C. Goodwin, “Estimation of model quality,” Automatica, 31, 1771–1779 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  26. V. F. Gubarev, “Problem-oriented identification and control in distributed-parameter systems,” Probl. Upravl. Inform., No. 3, 26–37 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Gubarev.

Additional information

__________

Translated from Kibernetika i Sistemnyi Analiz, No. 2, pp. 99–116, March–April 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubarev, V.F. Rational approximation of distributed parameter systems. Cybern Syst Anal 44, 234–246 (2008). https://doi.org/10.1007/s10559-008-0023-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-008-0023-8

Keywords

Navigation