Advertisement

Cybernetics and Systems Analysis

, Volume 44, Issue 2, pp 234–246 | Cite as

Rational approximation of distributed parameter systems

  • V. F. Gubarev
Article

Abstract

A new approach to the construction of approximate models is proposed and justified for a wide class of distributed and lumped parameter systems. The approach is based on the iterative identification method that is especially efficient under uncertainty and errors in available data.

Keywords

modeling iterative identification approximation uncertainty Green’s function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Sergienko and V. S. Deineka, “Solution of inverse boundary-value problems for multicomponent parabolic distributed systems,” Cybern. Syst. Analysis, 43, No. 4, 507–526 (2007).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    I. V. Sergienko and V. S. Deineka, “Solving combined inverse problems for multicomponent parabolic distributed systems,” Cybern. Syst. Analysis, 43, No. 5, 655–674 (2007).MATHCrossRefGoogle Scholar
  3. 3.
    A. G. Butkovskii, “A structural method for distributed parameter systems,” Avtom. Telemekh., No. 5 (1975).Google Scholar
  4. 4.
    A. G. Butkovskii, Characteristics of Distributed Parameter Systems [in Russian], Fizmatgiz, Nauka, Moscow (1979).Google Scholar
  5. 5.
    Yu. N. Andreev, Control of Finite-Dimensional Linear Objects [in Russian], Fizmatgiz, Nauka, Moscow (1979).Google Scholar
  6. 6.
    K. Glover, R. F. Curtain, and J. R. Partington, “Realization and approximation of linear infinite-dimensional systems with error bounds,” SIAM J. Contr. Optimiz., 26, No. 4, 863–898 (1988).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. R. Coifman and R. Rochberg, “Representation theorems for holomorhic and harmonic functions in L p,” Asterisque, 77, 11–66 (1980).MATHMathSciNetGoogle Scholar
  8. 8.
    V. M. Adamyan, D. Z. Arov, and M. G. Krein, “Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem,” Mat. Zhurn., 15, 31–73 (1971).Google Scholar
  9. 9.
    P. M. Makila, “On identification of stable systems and optimal approximation,” Automatica, 27, No. 4, 663–676 (1991).CrossRefMathSciNetGoogle Scholar
  10. 10.
    T. Kailath, Linear Systems, Prentice-Hall, N.J. (1980).MATHGoogle Scholar
  11. 11.
    B. P. Demidovich, Lectures on Mathematical Theory of Stability [in Russian], Fizmatgiz, Nauka, Moscow (1967).Google Scholar
  12. 12.
    K. Chaudrasekharan, Classical Fourier Transforms, Springer, Berlin (1989).Google Scholar
  13. 13.
    P. Clement, “Application of generalized Laguerre functions,” Matematics and Computers in Simulation, 27, 541–550 (1985).CrossRefMathSciNetGoogle Scholar
  14. 14.
    P. M. Makila, “Approximation of stable systems by Laguerre filters,” Automatica, 26, No. 2, 333–345 (1990).CrossRefMathSciNetGoogle Scholar
  15. 15.
    Bo Wahlberg, “Laguerre and Kautz models,” in: Prepr. 10th IFAC Symp. on System Identification, SYSID’94, Copenhagen, Denmark, 3 (1994), pp. 1–12.Google Scholar
  16. 16.
    P. S. C. Heuberger, M. J. Van den Hof, and O. H. Bosgra, “A generalized orthonormal basis for linear dynamic systems,” IEEE Trans. Automat. Contr., 451–465 (1995).Google Scholar
  17. 17.
    I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in a Hilbert Space [in Russian], Fizmatgiz, Nauka, Moscow (1965).Google Scholar
  18. 18.
    A. G. Aleksandrov, “Finite-frequency identification: A multi-dimensional object,” in: Proc. Intern. Conf. on Control Problems [in Russian], Selected Works of V. A. Trapeznikov ICP, RAS, 1 (1999), pp. 15–28.Google Scholar
  19. 19.
    Yu. F. Orlov, “Frequency parameter identification,” Dif. Uravn., 42, No. 3, 425–428 (2006).MathSciNetGoogle Scholar
  20. 20.
    V. F. Gubarev, “Selective identification of submodels of dynamic systems,” in: Proc. Intern. Conf. on Control Problems and Applications (Engineering, Production, Economy) [in Russian], Inst. of Math. NAS of Belarus, 2 (2005), pp. 41–50.Google Scholar
  21. 21.
    A. G. Aleksandrov, “A method of frequency parameters,” Avtom. Telemekh., 50, No. 12, 3–15 (1989).Google Scholar
  22. 22.
    V. F. Gubarev and P. A. Tigunov, “On peculiarities of identifications of multidimensional continuous systems by data with bounded indeterminacy,” Probl. Contr. Comp. Sci., 38, No. 4, 23–39 (2006).Google Scholar
  23. 23.
    V. F. Gubarev, “Method of iterative identification of multidimensional systems by uncertain data. Part I. Theoretical Aspects,” Probl. Contr. Comp. Sci., No. 9, 38, 12–28 (2006).Google Scholar
  24. 24.
    V. F. Gubarev and P. A. Tigunov, “Method of iterative identification of multidimensional systems by uncertain data. Part II. Algorithms,” Probl. Contr. Comp. Sci., 39, No. 4, 1–11 (2007).Google Scholar
  25. 25.
    B. M. Ninness and G. C. Goodwin, “Estimation of model quality,” Automatica, 31, 1771–1779 (1995).MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    V. F. Gubarev, “Problem-oriented identification and control in distributed-parameter systems,” Probl. Upravl. Inform., No. 3, 26–37 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  1. 1.Institute of Space ResearchNational Academy of Sciences of Ukraine and National Space Agency of UkraineKyivUkraine

Personalised recommendations