Cybernetics and Systems Analysis

, Volume 43, Issue 6, pp 848–857 | Cite as

Analysis of mathematical models and methods of solving combinatorial optimization problems on game-type permutations

  • O. A. Yemets
  • N. Yu. Ust’yan


The paper is concerned with an optimization problem on game-type permutations, where one or both players have combinatorial constraints on their strategies. A mathematical model of such problems is constructed and analyzed. A modified graphical method is proposed to solve (2xn)-and (mx2)-dimensional problems. High-dimensional problems are reduced to linear programming and combinatorial optimization problems.


optimization problem on permutations antagonistic game value of game modified graphical method linear programming methods combinatorial optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. G. Stoyan and O. O. Yemets, Theory and Methods of Euclidean Combinatorial Optimization [in Ukrainian], ISDO, Kyiv (1993).Google Scholar
  2. 2.
    Yu. G. Stoyan, S. V. Yakovlev, O. A. Emets, and O. A. Valuiskaya, “Construction of convex continuations for functions defined on a hypersphere,” Cybern. Syst. Analysis, 34, No. 2, 176–184 (1998).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    O. A. Emets and A. A. Roskladka, “Algorithmic solution of two parametric optimization problems on a set of complete combinations,” Cybern. Syst. Analysis, 35, No. 6, 981–986 (1999).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    O. A. Yemets, L. G. Yevseeva, and N. G. Romanova, “A mathematical interval model of a combinatorial problem of packing of color rectangles,” Cybern. Syst. Analysis, 37, No. 3, 408–414 (2001).CrossRefGoogle Scholar
  5. 5.
    O. O. Yemets, L. M. Kolechkina, and S. I. Nedobachii, Analysis of Domains of Definition of Euclidean Combinatorial Optimization Problems on Permutation Sets [in Ukrainian], Polt. Derzh. Tekhn. Univ. Yu. Kondratyuka, Poltava (1999).Google Scholar
  6. 6.
    O. A. Yemets, “A truncation method for combinatorial optimization problems,” Ekonomika Mat. Metody, 33, Issue 4, 120–129 (1997).Google Scholar
  7. 7.
    O. O. Yemets and E. M. Yemets, “Truncation in linear partially combinatorial problems of Euclidean combinatorial optimization,” Dop. NAN Ukrainy, No. 9, 105–109 (2000).Google Scholar
  8. 8.
    O. A. Yemets and E. M. Yemets, “Truncations in linear partially combinatorial optimization problems on permutations,” Ekonomika Mat. Metody, 37, No. 1, 118–121 (2001).Google Scholar
  9. 9.
    O. A. Yemets and A. A. Roskladka, “Solution of a Euclidean combinatorial optimization problem by the dynamic-programming method,” Cybern. Syst. Analysis, 38, No. 1, 117–123 (2002).CrossRefGoogle Scholar
  10. 10.
    O. A. Emets and T. N. Barbolina, “Solving linear optimization problems on arrangements by the truncation method,” Cybern. Syst. Analysis, 39, No. 6, 889–896 (2003).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    O. A. Emets and L. N. Kolechkina, “Solution of optimization problems with fractional-linear objective functions and additional linear constraints on permutations,” Cybern. Syst. Analysis, 40, No. 3, 329–339 (2004).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton Univ. Press, Princeton, NJ (1944).MATHGoogle Scholar
  13. 13.
    E. S. Ventsel’, Elements of Game Theory [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  14. 14.
    A. V. Krushevskii, Game Theory [in Russian], Vyshcha Shkola, Kyiv (1977).Google Scholar
  15. 15.
    L. A. Petrosyan, N. A. Zenkevich, and E. A. Semina, Game Theory [in Russian], Vyssh. Shk., Moscow (1998).MATHGoogle Scholar
  16. 16.
    Yu. P. Zaichenko, Operations Research [in Russian], Vyshcha Shkola, Kyiv (1979).Google Scholar
  17. 17.
    T. S. Ferguson, Game Theory, Pt. II. Two-Person Zero-Sum Games,
  18. 18.
    I. N. Lyashenko (general editor), E. A. Karagodova, N. V. Chernyshova, and N. Z. Shor, Linear and Nonlinear Programming [in Russian], Vyshcha Shkola, Kyiv (1965).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.University of Consumer’s CooperationPoltavaUkraine

Personalised recommendations