Advertisement

Cybernetics and Systems Analysis

, Volume 43, Issue 6, pp 799–809 | Cite as

Optimal pattern recognition procedures and their application

  • I. V. Sergienko
  • A. M. Gupal
Systems Analysis

Abstract

Results on Bayesian classification procedures, optimal on structures such as Markov chain and independent features, are reviewed. Numerical results of predicting protein secondary structure based on Bayesian classification procedures on non-stationary Markov chains are discussed. Complementarity relations for encoding bases in one DNA strand are presented.

Keywords

recognition Bayesian procedure procedure error learning sample protein secondary structure Markov chain protein folding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Gupal, S. V. Pashko, and I. V. Sergienko, “Efficiency of Bayesian classification procedure,” Cybern. Syst. Analysis, 31, No. 4, 543–554 (1995).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    I. V. Sergienko and A. M. Gupal, “Design principles for inductive inference procedures,” Cybern. Syst. Analysis, 42, No. 4, 505–515 (2006).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. S. Nemirovskii and D. B. Yudin, Complexity of Problems and Efficiency of Optimization Methods [in Russian], Nauka, Moscow (1979).Google Scholar
  4. 4.
    I. V. Sergienko, A. M. Gupal, and S. V. Pashko, “Complexity of classification problems,” Cybern. Syst. Analysis, 32, No. 4, 519–533 (1996).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    B. A. Beletskiy, A. A. Vagis, S. V. Vasilyev, and N. A. Gupal, “Complexity of Bayesian procedure of inductive inference. Discrete case,” J. Autom. Inform. Sci., 38, Issue 11, 56–73 (2006).CrossRefGoogle Scholar
  6. 6.
    A. M. Gupal and A. A. Vagis, “Statistical estimation of the Markov pattern recognition procedure,” J. Autom. Inform. Sci., 33, Issue 4, 5–15 (2001).Google Scholar
  7. 7.
    A. M. Gupal and I. V. Sergienko, “Optimal pattern recognition procedures. Substantiation of inductive inference procedures,” Cybern. Syst. Analysis, 39, No. 1, 27–32 (2003).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    I. V. Sergienko, A. M. Gupal, A. S. Vorobyev, and A. A. Vagis, “The mathematical model of genome,” J. Autom. Inform. Sci., 36, Issue 3, 56–61 (2004).CrossRefGoogle Scholar
  9. 9.
    I. V. Sergienko and A. M. Gupal, “Statistical analysis of genome,” Cytology and Genetics, 38, No. 4, 76–81 (2004).MathSciNetGoogle Scholar
  10. 10.
    B. A. Beletskiy and A. N. Gupal, “Statistical analysis of bacteria genomes. Complementarity principles of bases,” J. Autom. Inform. Sci., 37, Issue 12, 53–58 (2005).CrossRefGoogle Scholar
  11. 11.
    B. A. Beletsky and A. N. Gupal, “Statistical analysis of plant genomes. Complementarity of bases,” Dop. NANU, No. 7, 84–87 (2006).Google Scholar
  12. 12.
    A. M. Gupal, I. I. Andreychuk, A. A. Vagis, and L. A. Zakrevskaya, “Statistical analysis of proteins,” J. Autom. Inform. Sci., 36, Issue 12, 25–29 (2004).CrossRefGoogle Scholar
  13. 13.
    A. M. Gupal and A. A. Vagis, “Complementarity principles of bases in DNA chromosomes,” J. Autom. Inform. Sci., 37, Issue 10, 24–28 (2005).CrossRefGoogle Scholar
  14. 14.
    I. V. Sergienko, A. M. Gupal, and A. A. Vagis, “Complementary principles of bases recoding along one chain of DNA,” Cytology and Genetics, 39, No. 6, 71–75 (2005).Google Scholar
  15. 15.
    B. A. Beletskiy, S. V. Vasilyev, and A. N. Gupal, “Prediction of secondary structure of proteins on the basis of Bayesian recognition procedures,” J. Autom. Inform. Sci., 39, Issue 2, 1–9 (2007).CrossRefGoogle Scholar
  16. 16.
    I. V. Sergienko, B. A. Beletskii, S. V. Vasil’yev, and A. N. Gupal, “Predicting protein secondary structure based on Bayesian classification procedures on Markovian chains,” Cybern. Syst. Analysis, 43, No. 2, 208–212 (2007).MATHCrossRefGoogle Scholar
  17. 17.
    B. A. Beletskiy, A. A. Vagis, S. V. Vasilyev, and A. M. Gupal, “Protein secondary structure recognition procedures,” J. Autom. Inform. Sci., 39, Issue 8, 65–71 (2007).Google Scholar
  18. 18.
    M. Kline, Mathematics: The Loss of Certainty, Oxford Univ. Press, New York (1980).Google Scholar
  19. 19.
    V. I. Arnold, “A mathematical duel apropos Bourbaki,” Vestn. RAN, No. 3, 245–250 (2002).Google Scholar
  20. 20.
    B. Davies, Whither Mathematics? Not. AMS, 52, 1350–1356 (2005).MATHGoogle Scholar
  21. 21.
    M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., New York (1979).MATHGoogle Scholar
  22. 22.
    P. S. Aleksandrov (ed.), Hilbert Problems [in Russian], Nauka, Moscow (1969).Google Scholar
  23. 23.
    A. M. Yaglom and I. M. Yaglom, Probability and Information [in Russian], Nauka, Moscow (1973).Google Scholar
  24. 24.
    Chin-Liang Chang and Richard Char-Tung Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press, New York (1973).MATHGoogle Scholar
  25. 25.
    I. V. Sergienko and A. N. Gupal, “Inductive mathematics,” Visn. NAN Ukr., No. 5, 19–25 (2002).Google Scholar
  26. 26.
    I. V. Sergienko and A. N. Gupal, “Modern mathematics: Combined deductive and inductive approaches,” Visn. NAN Ukr., No. 1, 18–23 (2003).Google Scholar
  27. 27.
    F. Bacon, The Works, Vol. 8, The New Organon, Taggard and Thompson, Boston (1863).Google Scholar
  28. 28.
    W. Minto, Logic, Inductive and Deductive, Charles Scribner’s Sons, New York (1893).Google Scholar
  29. 29.
    V. F. Asmus, Logic [in Russian], OGIZ, Moscow (1947).Google Scholar
  30. 30.
    B. Russell, Human Knowledge: Its Scope and Limits, George Allen & Unwin, London (1948).Google Scholar
  31. 31.
    G. Polya, Mathematics and Plausible Reasoning, Vol. 1: Induction and Analogy in Mathematics, Vol. 2: Patterns of Plausible Reasoning (1968).Google Scholar
  32. 32.
    T. W. Anderson and L. A. Goodman, “Statistical inference about Markov chains,” Ann. Math. Statist., 28, 89–110 (1957).MathSciNetGoogle Scholar
  33. 33.
    J. L. Casti, “Confronting science’s logical limits,” Sci. Amer., Oct., 78–81 (1996).Google Scholar
  34. 34.

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations