Advertisement

Cybernetics and Systems Analysis

, Volume 43, Issue 3, pp 433–438 | Cite as

Optimal search for signals in a multichannel system: Arbitrary initial distribution in state space merging scheme

  • N. G. Vovkodav
  • L. N. Shlepakov
Article
  • 16 Downloads

Abstract

Markovian and semi-Markovian random processes are used to analyze the problem of optimal search for signals in a multichannel communication system with arbitrarily distributed random outputs. The search efficiency factor is found in explicit form based on state space merging, and a mathematical programming problem is set up to find a numerical suboptimal solution.

Keywords

multichannel system signal search probability distribution semi-Markovian process state space merging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Korolyuk and A. F. Turbin, Semi-Markovian Processes and Their Applications [in Russian], Naukova Dumka, Kyiv (1976).Google Scholar
  2. 2.
    V. S. Korolyuk and A. F. Turbin, Markovian Renewal Processes in Systems Reliability Problems [in Russian], Naukova Dumka, Kyiv (1982).Google Scholar
  3. 3.
    V. S. Korolyuk, Stochastic Models of Systems [in Russian], Naukova Dumka, Kyiv (1989).MATHGoogle Scholar
  4. 4.
    O. Hellman, Introduction to the Theory of Optimal Search [Russian translation], Nauka, Moscow (1985).Google Scholar
  5. 5.
    L. N. Shlepakov and N. G. Vovkodav, “Numerical and analytic methods of solving search problems, ” in: Trans. Inst. Mathem. NAS Ukraine, Vol. 49, Kyiv (2003).Google Scholar
  6. 6.
    V. S. Korolyuk and A. F. Turbin, Mathematical Fundamentals of State Space Merging of Complex Systems [in Russian], Naukova Dumka, Kyiv (1978).Google Scholar
  7. 7.
    D. R. Cox and W. L. Smith, Renewal Theory, Methuen and Co., London (1962).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • N. G. Vovkodav
    • 1
  • L. N. Shlepakov
    • 1
  1. 1.Institute of MathematicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations