Advertisement

Cybernetics and Systems Analysis

, Volume 43, Issue 3, pp 353–361 | Cite as

Synthesis of systems of neurofunctional transformations in classification problems

  • N. F. Kirichenko
  • Yu. G. Krivonos
  • N. P. Lepekha
Systems Analysis

Abstract

Optimal synthesis of linear and nonlinear transformations is used to synthesize pattern recognition systems. The necessary and sufficient conditions for the existence of robust dichotomous linear separability of sets in feature space are represented in terms of pseudoinverse operations. The synthesis of classification systems is reduced to searching for the best nonlinear transformations of the components of the feature vector or optimal linear combinations of its components.

Keywords

classification systems system synthesis pattern recognition pseudoinverse and projection matrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kohonen, Self-Organizing Maps, 3rd ed., Springer, Tokyo (2001).MATHGoogle Scholar
  2. 2.
    V. N. Vapnik, Statistical Learning Theory, Wiley, New York (1998).MATHGoogle Scholar
  3. 3.
    S. Haykin, Neural Networks, A Comprehensive Foundation, Prentice Hall, Upper Saddle River (NJ) (1999).MATHGoogle Scholar
  4. 4.
    A. G. Ivakhnenko, Self-Organizing Systems of Recognition and Automatic Control [in Russian], Tekhnika, Kyiv (1969).Google Scholar
  5. 5.
    N. M. Kussul’, A. Yu. Shelestov, and A. M. Lavrinyuk, Intelligent Calculations: A Textbook [in Ukrainian], Naukova Dumka, Kyiv (2006).Google Scholar
  6. 6.
    N. F. Kirichenko, “Analytical representation of perturbations of pseudoinverse matrices,” Cybern. Syst. Analysis, 33, No. 2, 230–238 (1997).MATHCrossRefGoogle Scholar
  7. 7.
    N. F. Kirichenko and N. P. Lepekha, “Application of pseudoinverse and projective matrices to studying control, observation, and identifications problems,” Cybern. Syst. Analysis, 38, No. 4, 568–585 (2002).MATHCrossRefGoogle Scholar
  8. 8.
    N. F. Kirichenko, Yu. V. Krak, and A. A. Polishchuk, “Pseudoinverse and projection matrices in problems of synthesis of functional transformers,” Cybern. Syst. Analysis, 40, No. 3, 407–419 (2004).MATHCrossRefGoogle Scholar
  9. 9.
    N. F. Kirichenko, V. S. Donchenko, and D. P. Serbaev, “Nonlinear recursive regression transformers: Dynamic systems and optimization,” Cybern. Syst. Analysis, 41, No. 3, 364–373 (2005).MATHCrossRefGoogle Scholar
  10. 10.
    A. Albert, Regression, Pseudoinversion, and Recurrent Estimation [Russian translation], Nauka, Moscow (1977).Google Scholar
  11. 11.
    N. F. Kirichenko, A. M. Reznik, and S. P. Shchetenyuk, “Matrix pseudoinversion in the problem of design of associative memory,” Cybern. Syst. Analysis, 37, No. 3, 308–316 (2001).MATHCrossRefGoogle Scholar
  12. 12.
    I. N. Bronshtein and K. A. Semendyaev, A Handbook of Mathematics [in Russian], Gos. Izd. Tekhn.-Teoret. Lit., Moscow (1956).Google Scholar
  13. 13.
    Yu. S. Zav’yalov, B. I. Kvasov, and V. L. Miroshnichenko, Methods of Spline Functions [in Russian], Nauka, Moscow (1980).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • N. F. Kirichenko
    • 1
  • Yu. G. Krivonos
    • 1
  • N. P. Lepekha
    • 2
  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Taras Shevchenko National UniversityKyivUkraine

Personalised recommendations