Cybernetics and Systems Analysis

, Volume 42, Issue 5, pp 686–693 | Cite as

Mathematical simulation and computer-aided statistical analysis of biological systems

  • E. B. Senyuk
  • V. K. Yasinskii


The paper is concerned with a mathematical model of a biological system. The cases of quasistationary state and transients are examined. The Laplace-transformed unknown parameters of the biological system are analyzed. A structural element associated with a quasistationary response of the biosystem to external disturbances is analyzed.


biorhythm quasistationary state transients disturbing force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Pishak, T. N. Boychuk, M. T. Strinadko, and B. M. Timochko, “Modeling of biological systems rhyhms,” in: Proc. 4th Intern. Conf. on Correlation Optics, SPIE, 3904 (1999), pp. 570–574.Google Scholar
  2. 2.
    K. Reinisch, Kybernetische Grundlagen und Beschreibungen Kontinuierlicher Systeme, Verlag Technik, Berlin (1974).Google Scholar
  3. 3.
    F. Halberg, Y. L. Tong, and E. A. Johnson, “Circadian system phase an aspect of temporal morphology; procedures and illustrative examples,” in: The Cellular Aspects of Biorhythms, Symposium of Biorhythms, Springer-Verlag (1967), pp. 20–48.Google Scholar
  4. 4.
    F. I. Komarov, S. L. Zaguskin, and S. I. Rapoport, “A chronobiological trend in medicine: biocontrolled chronophysiotherapy,” Terapevtich. Arkhiv, No. 8, 3–6 (1994).Google Scholar
  5. 5.
    D. Shupta, “The rhythms that provide life,” Bud’mo Zdorovi, No. 1, 24–25 (2003).Google Scholar
  6. 6.
    T. I. Murav’eva, “Chronobiological aspects in medical practice,” Meditsinskaya Sestra, No. 3, 30–32 (2000).Google Scholar
  7. 7.
    W. J. Elliott, “Synchronization of medical treatment with the disease rhythm: A review,” Meditsina Svitu, 14, No. 2, 144–148 (2003).Google Scholar
  8. 8.
    V. P. D’yakonov, Manual on MathCAD PLUS 7.0 Pro [in Russian], SK Press, Moscow (1998).Google Scholar
  9. 9.
    M. Kac, Probability and Related Topics in Physical Sciences, Interscience, New York (1959).MATHGoogle Scholar
  10. 10.
    I. V. Yurchenko, L. I. Yasyns’ka, and V. K. Yasyns’kyi, Methods of stochastic Modeling of Systems [in Ukrainian], Prut, Chernivtsi, (2002).Google Scholar
  11. 11.
    G. Doetsch, Guide to the Application of Laplace Transforms, Van Nostrand, London-New York (1963).Google Scholar
  12. 12.
    V. S. Korolyuk and V. K. Yasyns’kyi, A Course in Probability Theory, Random Processes, and Mathematical Statistics [in Ukrainian], TVIMS, Kiev (2004).Google Scholar
  13. 13.
    G. V. Rozenberg, Twilight [in Russian], Fizmatgiz, Moscow (1963).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. B. Senyuk
    • 1
  • V. K. Yasinskii
    • 1
  1. 1.Yu. Fed’kovych National UniversityChernivtsiUkraine

Personalised recommendations