Cybernetics and Systems Analysis

, Volume 42, Issue 3, pp 320–327 | Cite as

Synergetic methods of data merging in mathematical statistics

  • A. N. Voronin


A comparative analysis of some aspects inherent in methods of mathematical statistics and synergetic methods of data complexation is carried out. The results obtained are used to increase the efficiency of statistical estimates computed from a small sample and also to determine estimates of characteristics of objects and processes in synergetic systems of data complexation when the number of channels is limited.


synergetics data complexation degree of freedom discriminator mathematical statistics Bayesian approach small sample 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Kolesnikov, Synergetic Control Theory [in Russian], Energoatomizdat, Moscow (1994).Google Scholar
  2. 2.
    H. Haken, Synergetics [Russian translation], Mir, Moscow (1980).Google Scholar
  3. 3.
    D. Cox and D. Hinkley, Theoretical Statistics [Russian translation], Mir, Moscow (1978).MATHGoogle Scholar
  4. 4.
    V. I. Lyal’ko, A. D. Fedorovskii, M. A. Popov, et al., “Using satellite data for studying problems of natural resources,” in: Space Exploration in Ukraine (2002–2004), NKAU, Kiev (2004), pp. 7–14.Google Scholar
  5. 5.
    I. D. Varlamov, D. V. P’yaskovskii, and S. V. Vodop’uan, “Adaptive correlation-extremal algorithm of navigation of a space vehicle over geophysical fields on the basis of differential Taylor transformations,” Space Science and Technology, No. 4, 141–146 (2001).Google Scholar
  6. 6.
    A. N. Voronin, Yu. K. Ziatdinov, and A. V. Kharchenko, Complex Engineering and Ergatic Systems: Methods of Investigation [in Russian], Fakt, Kharkov (1997).Google Scholar
  7. 7.
    A. N. Voronin, “Method of complexation of signals for bistatic radiolocation of small celestial bodies,” in: 9th Intern. Conf. “System Analysis and Control,” Izd. MAI, Moscow (2004), pp. 113–114.Google Scholar
  8. 8.
    D. V. Gaskarov and V. I. Shapovalov, Small Samples [in Russian], Statistics, Moscow (1978).Google Scholar
  9. 9.
    A. A. Fedulov, Yu. G. Fedulov, and V. N. Tsygichko, Introduction to the Theory of Statistically Unreliable Decisions [in Russian], Statistics, Moscow (1979).Google Scholar
  10. 10.
    S. D. Beshelev and F. G. Gurvich, Expert Estimates [in Russian], Nauka, Moscow (1973).Google Scholar
  11. 11.
    E. S. Ventzel, Probability Theory [in Russian], Nauka, Moscow (1969).Google Scholar
  12. 12.
    A. Sage and J. Melse, Estimation Theory with Application to Communication and Control [Russian translation], Svyaz’, Moscow (1976).Google Scholar
  13. 13.
    S. V. Mostovoi, Optimal Estimates of Parameters of Seismic Wave Fields [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  14. 14.
    C. Shannon, Works on Information Theory and Cybernetics [Russian translation], Izd. Inostr. Lit., Moscow (1963).Google Scholar
  15. 15.
    R. S. Guter and P. T. Reznikovskii, Programming and Computational Mathematics [in Russian], No. 2, Nauka, Moscow (1971).Google Scholar
  16. 16.
    R. Shannon, Systems Simulation: The Art and Science [Russian translation], Mir, Moscow (1978).Google Scholar
  17. 17.
    V. I. Mudrov and V. L. Kushko, Methods of Processing Measurements [in Russian], Sov. Radio, Moscow (1976).Google Scholar
  18. 18.
    M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, Method of Potential Functions in Machine Learning Theory [in Russian], Nauka, Moscow (1970).Google Scholar
  19. 19.
    A. N. Voronin, “Increasing the efficiency of statistical estimates of parameters of ergatic systems, ” Kibernetika i Vychisl. Tekhn., No. 50, 29–31 (1980).Google Scholar
  20. 20.
    A. N. Voronin, “On the rise of efficiency of statistical estimates for parameters of ergatic systems, ” Zentralblatt fur Mathematik und ihre Grenzgebiete, Mathematics Abstracts, Berlin-Heidelberg-New York (1983), p. 375.Google Scholar
  21. 21.
    A. N. Voronin, “Adaptive approximation models in optimization,” Kibern. Sist. Anal., No. 5, 83–93 (1994).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. N. Voronin
    • 1
  1. 1.National Aeronautical UniversityKievUkraine

Personalised recommendations