Cybernetics and Systems Analysis

, Volume 42, Issue 2, pp 183–187 | Cite as

Synergetic methods of data complexation

  • A. N. Voronin


Synergetic methods of data complexation are proposed that make it possible to obtain a maximal amount of available information using a limited number of channels. Instead of reducers of degrees of freedom, a mechanism of discriminators of degrees of freedom is proposed that enables all the channels to take part in the development of a cooperative decision in accordance with their informativeness in a current situation.


synergetics data complexation degrees of freedom weight coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Kolesnikov, Synergetic Control Theory [in Russian], Energoatomizdat, Moscow (1994).Google Scholar
  2. 2.
    H. Haken, Synergetics [Russian translation], Mir, Moscow (1980).Google Scholar
  3. 3.
    P. K. Anokhin, Essays on the Physiology of Functional Systems [in Russian], Medicine, Moscow (1975).Google Scholar
  4. 4.
    A. A. Ukhtomskii, Collected Works [in Russian], Vols. 1–4, Izd. LGU, Leningrad (1949)–(1954).Google Scholar
  5. 5.
    A. N. Voronin, Yu. K. Ziatdinov, and A. I. Kozlov, Vector Optimization of Dynamic Systems [in Russian], Tekhnika, Kyiv (1999).Google Scholar
  6. 6.
    V. I. Lyal’ko, A. D. Fedorovskii, M. A. Popov, et al., “Using satellite data for studying problems of natural resources,” in: Space Exploration in Ukraine (2002–2004), NKAU, Kiev (2004), pp. 7–14.Google Scholar
  7. 7.
    V. M. Tsimbal and O. Ya. Matveyev, “Development and application of multifrequency methods of remote sensing of natural environment,” in: Space Exploration in Ukraine (2002–2004), NKAU, Kiev (2004), pp. 22–25.Google Scholar
  8. 8.
    A. I. Vorob’ev, Yu. V. Kostyuchenko, V. I. Lyal’ko, et al., “Complexation of aerospace and geophysical methods in predicting the presence of oil-and-gas in the northwest shelf of the Black Sea,” Space Science and Technology, 8, Nos. 2/3, 149–166 (2002).Google Scholar
  9. 9.
    I. D. Varlamov, D. V. P’yaskovskii, S. V. Vodop’uan, “Adaptive correlation-extremal algorithm of navigation of a space vehicle over geophysical fields on the basis of differential Taylor transformations,” Space Science and Technology, No. 4, 141–146 (2001).Google Scholar
  10. 10.
    W. R. Ashby, An Introduction to Cybernetics [Russian translation], Izd. Inostr. Lit., Moscow (1959).MATHGoogle Scholar
  11. 11.
    O. Helmer, “The systematic use of expert judgment on operation research,” in: Proc. 3rd IFOS Conf., Oslo (1963), pp. 12–17.Google Scholar
  12. 12.
    A. N. Voronin, “On the rise of efficiency of statistical estimates for parameters of ergatic systems, ” Zentralblatt für Mathematik und ihre Grenzgebiete, Mathematics Abstracts, 484, 375 (1983).Google Scholar
  13. 13.
    A. N. Voronin, “Method of complexation of signals for the bistatic radiolocation of small celestial bodies,” in: 9th Intern. Conf. “System Analysis and Control,” Izd. MAI, Moscow (2004), pp. 113–114.Google Scholar
  14. 14.
    A. N. Voronin, “Adaptive approximation models in optimization,” Kibern. Sist. Anal., No. 5, 83–93 (1994).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. N. Voronin
    • 1
  1. 1.National Aeronautical UniversityKievUkraine

Personalised recommendations