Advertisement

Cybernetics and Systems Analysis

, Volume 41, Issue 5, pp 695–711 | Cite as

Optimal Control of the Dynamic Viscoelastic Stress-Strain State of a Composite Body

  • I. V. Sergienko
  • V. S. Deineka
Systems Analysis

Abstract

New optimal control problems for the dynamic viscoelastic stress-strain state of a composite body with quadratic cost functionals are considered. Existence theorems for unique optimal controls are proved for all the cases considered.

Keywords

viscoelastic deformation composite body low-strength inclusion optimal control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. Duvaut and J.-L. Lions, Inequalities in Physics and Mechanics, Springer-Verlag, Berlin (1979).Google Scholar
  2. 2.
    J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York (1971).Google Scholar
  3. 3.
    H. Gajewski, K. Greger, and K. Zacharias, Nichtlineare Operator Gleichungen und Operator Differential Gleichungen, Akademic-Verlar, Berlin (1974).Google Scholar
  4. 4.
    O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic-Type Equations [in Russian], Nauka, Moscow (1973).Google Scholar
  5. 5.
    O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Qasilinear Prabolic-Type Equations [in Russian], Nauka, Moscow (1967).Google Scholar
  6. 6.
    V. S. Deineka and I. V. Sergienko, Optimal Control of Inhomogeneous Distributed Systems [in Russian], Naukova Dumka, Kiev (2003).Google Scholar
  7. 7.
    V. S. Deineka and I. V. Sergienko, Models and Methods for Solving Problems in Inhomogeneous Media [in Russian], Naukova Dumka, Kiev (2001).Google Scholar
  8. 8.
    S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).Google Scholar
  9. 9.
    P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam-New York-London (1978).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • I. V. Sergienko
    • 1
  • V. S. Deineka
    • 1
  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations