Advertisement

Cybernetics and Systems Analysis

, Volume 41, Issue 2, pp 215–223 | Cite as

Stability Radius of a Lexicographic Optimum of a Vector Problem of Boolean Programming

  • V. A. Emelichev
  • K. G. Kuzmin
Article

Abstract

A Boolean problem of vector lexicographic optimization is considered. Its partial criteria are projections of linear functions on the nonnegative orthant. A formula is obtained for calculation of the limit level of perturbations of the parameter space of the problem with a metric l1 that preserve the lexicographic optimality of a given solution.

Keywords

lexicographic optimum projection on the nonnegative orthant stability radius 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    I. V. Sergienko, L. N. Kozeratskaya, and T. T. Lebedeva, “Investigation of stability and parametric analysis of discrete optimization problems,” Naukova Dumka, Kiev (1995).Google Scholar
  2. 2.
    L. N. Kozeratskaya, and T. T. Lebedeva, and I. V. Sergienko, “Stability of problems of discrete optimization,” Kibern. Sist. Anal., No. 3, 78–93 (1993).Google Scholar
  3. 3.
    Yu. N. Sotskov, V. K. Leont’ev, and E. N. Gordeev, “Some concepts of stability analysis in combinatorial optimization,” Discrete Appl. Math., 58, No.2, 169–190 (1995).CrossRefGoogle Scholar
  4. 4.
    N. J. Greenberg, “An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization,” in: Advances in Comput. and Stochast. Optimizat. Logic Program. and Heurist. Search, Kluwer, Boston (1998), pp. 97–148.Google Scholar
  5. 5.
    Yu. N. Sotskov, V. S. Tanaev, and F. Werner, “Stability radius of an optimal schedule: A survey and recent developments,” in: Industrial Appl. of Combinator. Optimizat, Kluwer, Dordrecht (1998), pp. 72–108.Google Scholar
  6. 6.
    V. A. Emelichev, E. Girlich, Yu. V. Nikulin, and D. P. Podkopaev, “Stability and regularization of vector problems of integer linear programming,” Optimization, 51, No.4, 645–676 (2002).CrossRefGoogle Scholar
  7. 7.
    S. E. Bukhtoyarov, V. A. Emelichev, and Yu. V. Stepanishina, “Stability of Discrete Vector Problems with the Parametric Principle of Optimality,” Kibern. Sist. Anal., No. 4, 155–166 (2003).Google Scholar
  8. 8.
    I. V. Sergienko and N. V. Semenova, “Integer programming problems with inexact data: Exact and approximate solutions,” Kibern. Sist. Anal., No. 6, 75–86 (1995).Google Scholar
  9. 9.
    I. V. Sergienko, V. A. Roshchin, and N. V. Semenova, “Some integer programming problems with inexact data and their solution,” Probl. Upravlen. Inf., No. 6, 116–123 (1998).Google Scholar
  10. 10.
    M. Ehrgott and X. Gandibleux, “A survey and annotated bibliography of multicriteria combinatorial optimization,” Oper. Res. Spektr., 22, No.4, 425–460 (2000).Google Scholar
  11. 11.
    V. A. Emelichev and D. P. Podkopayev, “Stability and regularization of vector problems of integer linear programming,” Diskret. Anal. Issled. Operats., Ser. 2, 8, No.1, 47–69 (2001).Google Scholar
  12. 12.
    T. T. Levedeva and T. I. Sergienko, “Comparative analysis of different types of stability with respect to constraints of a vector integer-optimization problem,” Kibern. Sist. Anal., No. 1, 63–70 (2004).Google Scholar
  13. 13.
    V. A. Emelichev and K. G. Kuzmin, “Stability radius for a strictly effective solution to a vector minimization problem for threshold functions in l 1 metric,” Kibern. Sist. Anal., No. 3, 62–67 (2004).Google Scholar
  14. 14.
    V. A. Emelichev and Yu. V. Nikulin, “Stability of an efficient solution of a vector problem of integer linear programming,” in: Dokl. NAN Bekarusi, 44, No.4, 26–28 (2000).Google Scholar
  15. 15.
    V. A. Emelichev and V. G. Pokhil’ko, “Sensitivity analysis of efficient solutions of a vector problem of minimization of linear forms on a set of substitutions,” Diskret. Mat. 12, No.3, 37–48 (2000).Google Scholar
  16. 16.
    V. A. Emelichev and V. N. Krichko, “Stability radius of an efficient solution to a vector square-law problem of Boolean programming,” Zh. Vychisl. Mat. Mat. Fiz., 41, No.2, 346–350 (2001).Google Scholar
  17. 17.
    V. A. Emelichev and Yu. V. Stepanishina, “Multicriterion combinatorial linear problems: Parametrization of the principle of optimality and stability of efficient solutions,” Diskret. Mat., 13, No.4, 43–51 (2001).Google Scholar
  18. 18.
    V. A. Emelichev and K. G. Kuzmin, “Stability of an efficient solution of a vector combinatorial problem in l 1 metric,” Dokl. NAN Belarusi, 47, No.5, 25–28 (2003).Google Scholar
  19. 19.
    V. A. Emelichev, K. G. Kuzmin, and A. M. Leonovich, “Stability in vector combinatorial optimization problems,” Avtomat. Telemekh., No. 2, 79–92 (2004).Google Scholar
  20. 20.
    V. A. Emelichev, V. N. Krichko, and Yu. V. Nikulin, “The stability radius of an efficient solution in minimax Boolean programming problem,” Control and Cybernetics, 33, No.1, 127–132 (2004).Google Scholar
  21. 21.
    V. A. Emelichev and K. G. Kuzmin, “Stability radius of a lexicographic optimum of a vector Boolean problem with partial criteria that are projections of linear functions on R +,” in: Proc. IIth Intern. School-Seminar “Theory of Decision Making,” Uzhgorod. State University, Uzhgorod (2004), pp. 36–37.Google Scholar
  22. 22.
    R. A. Berdysheva and V. A. Emelichev, “Stability radius of a lexicographic optimum of a vector trajectory problem,” Vestnik Belorussk. Univ., Ser. 1, No. 1, 43–46 (1998).Google Scholar
  23. 23.
    I. I. Yeremin and V. D. Mazurov, Nonstationary Processes of Mathematical Programming [in Russian], Nauka, Moscow (1979).Google Scholar
  24. 24.
    I. I. Yeremin, Vl. D. Mazurov, and N. N. Astaf’yev, Improperly Posed Problems of Linear and Convex Programming [in Russian], Nauka, Moscow (1983).Google Scholar
  25. 25.
    Ye. A. Berdnikova, I. I. Yeremin, and L. D. Popov, “Distributed Fejer processes for systems of linear inequalities and linear programming problems,” Avtomat. Telemekh., No. 2, 16–32 (2004).Google Scholar
  26. 26.
    I. V. Sergienko, Mathematical Models and Methods of Solution of Discrete Optimization Problems [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  27. 27.
    Yu. Yu. Chervak, Optimization: Unimprovable Choice [in Ukrainian], Uzhgorod. State University, Uzhgorod (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. A. Emelichev
    • 1
  • K. G. Kuzmin
    • 1
  1. 1.Byelorussian State UniversityMinskBelarus’

Personalised recommendations