Cybernetics and Systems Analysis

, Volume 40, Issue 5, pp 665–677 | Cite as

Optimizing the results of pseudo-inverse simulation of the dynamics of space-time distributed processes

  • V. V. Skopetskii
  • V. A. Stoyan
  • Yu. G. Krivonos


The analysis of root-mean-square simulation of the initial boundary-value problems of the dynamics of distributed-parameter systems is continued. The authors formulate and solve minimization problems for the simulation errors by optimizing observations of the initial and boundary conditions and by selecting reference points for simulation functions.


mathematical simulation initial boundary-value problems ill-posed problems pseudo-solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Stoyan, “An approach to the analysis of initial and boundary problems of mathematical physics,” Probl. Upravl. Avtom., No. 1, 79–86 (1998).Google Scholar
  2. 2.
    Skopetskii, V. V., Stoyan, V. A., Krivonos, Yu. G. 2001Mathematical Simulation of Direct and Inverse Dynamic Problems for Distributed-Parameter SystemsNaukova DumkaKiev[in Ukrainian]Google Scholar
  3. 3.
    Stoyan, V. A. 2004Simulation and Identification of the Dynamics of Distributed-Parameter SystemsVPTS Kyiv. Univ.Kiev[in Ukrainian]Google Scholar
  4. 4.
    V. V. Skopetskii, V. A. Stoyan, and T. Yu. Blagoveshchens’ka, “Construction and analysis of general solutions to the mass and moisture transfer problem in a bounded space-time domain,” Dop. NANU, No. 9, 96–102 (2001).Google Scholar
  5. 5.
    Skopetskii, V. V., Stoyan, V. A., Blagoveshchens’ka, T. Yu. 2001Mathematical simulation of space-time ecological processesKomp. Matem. Optymiz. Obchysl.2403410Google Scholar
  6. 6.
    V. A. Stoyan and S. D. Voloshchuk, “Optimization problems in simulation of pointwise-controlled distributed-parameter dynamic systems,” Probl. Upravl. Inform., No. 4, 53–66 (2003).Google Scholar
  7. 7.
    S. D. Voloshchuk and V. A. Stoyan, “Simulation and optimization of pointwise-observable distributed-parameter dynamic systems,” Zhurn. Obchysl. Prykl. Matem., No. 2(89), 13–25 (2003).Google Scholar
  8. 8.
    V. A. Stoyan, “Constructing the Green functions for distributed-parameter systems,” Zhurn. Obchysl. Prykl. Matem., No. 1(83), 108–111 (1998).Google Scholar
  9. 9.
    N. F. Kirichenko and V. A. Stoyan, “Analytical representation of matrix and integral linear transformations,” Kibern. Sist. Analiz, No. 3, 90–104 (1998).Google Scholar
  10. 10.
    Gantmakher, A. F. 1967The Theory of MatricesNaukaMoscow[in Russian]Google Scholar
  11. 11.
    N. F. Kirichenko, “Pseudoinversion and recurrence of matrices in simulation and control problems,” Probl. Upravl. Inform., No. 1, 114–127 (1995).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • V. V. Skopetskii
    • 1
  • V. A. Stoyan
    • 2
  • Yu. G. Krivonos
    • 1
  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKievUkraine
  2. 2.T. G. Shevchenko National UniversityKievUkraine

Personalised recommendations