Cardiovascular Engineering

, Volume 10, Issue 3, pp 91–108 | Cite as

Design, Fabrication and Analysis of Silicon Hollow Microneedles for Transdermal Drug Delivery System for Treatment of Hemodynamic Dysfunctions

  • M. W. Ashraf
  • S. Tayyaba
  • A. Nisar
  • N. Afzulpurkar
  • D. W. Bodhale
  • T. Lomas
  • A. Poyai
  • A. Tuantranont
Original Research


In this paper, we present design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedles with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The mask layout design and fabrication process of silicon microneedles and reservoir involving deep reactive ion etching (DRIE) is first presented. This is followed by actual fabrication of silicon hollow microneedles by a series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of a MEMS based piezoelectrically actuated device with integrated silicon microneedles is presented. The coupledfield analysis of hollow silicon microneedle array integrated with piezoelectric micropump has involved structural and fluid field couplings in a sequential structural-fluid analysis on a three-dimensional model of the microfluidic device. The effect of voltage and frequency on silicon membrane deflection and flow rate through the microneedle is investigated in the coupled field analysis using multiple code coupling method. The results of the present study provide valuable benchmark and prediction data to fabricate optimized designs of the silicon hollow microneedle based microfluidic devices for transdermal drug delivery applications.


Computational fluid dynamic (CFD) analysis Deep reactive ion etching (DRIE) Drug delivery Hollow silicon microneedle Multifield analysis Transdermal drug delivery (TDD) 



The authors would like to thank and acknowledge K. Saejok, C. Hruanun, Atthi N. Somwamg, and J. Supadech at Thai Microelectronics Center (TMEC), Thailand for providing DRIE facility and process for microneedle fabrication.


  1. Aggarwal P, Johnston CR. Geometrical effects in mechanical characterizing of microneedle for biomedical applications. Sens Actuators B. 2004;102:226–34.CrossRefGoogle Scholar
  2. Ahmadian M, Saidi M, Mehrabian A, Bazargan M, Kenarsari S. Performance of valveless diffuser micropumps under harmonic piezoelectric actuation. In: ASME conference on engineering systems design and analysis. 2006.Google Scholar
  3. ANSI/IEEE Std 176. IEEE standard on piezoelectricity. IEEE; 1987.
  4. Aoyagi S, et al. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sens Actuators A. 2008;143:20–8.CrossRefGoogle Scholar
  5. Arora A, Prausnitzc MR, et al. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364:227–36.CrossRefPubMedGoogle Scholar
  6. Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14:101–14.CrossRefPubMedGoogle Scholar
  7. Batchelor GK. An introduction to fluid dynamics. University of Cambridge. 1967.Google Scholar
  8. BeMent SL, et al. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans Biomed Eng. 1986;33(2):230–41.CrossRefPubMedGoogle Scholar
  9. Bodhale DW, Nisar A, Afzulpurkar N. Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluid Nanofluid. 2009. doi: 10.1007/s10404-009-0467-9.
  10. Brown MB, Martin GP, et al. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv. 2006;13:175–87.CrossRefPubMedGoogle Scholar
  11. Bussemer T, Otto I, Bodmeier R. Pulsatile drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2001;18(5):433–58.PubMedGoogle Scholar
  12. Campbell PK, et al. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng. 1991;38(8):758–68.CrossRefPubMedGoogle Scholar
  13. Chen J, et al. A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans Biomed Eng. 1997;44(8):760–9.CrossRefPubMedGoogle Scholar
  14. Cui Q, Liu C, Xuan F. Study on a piezoelectric micropump for the controlled drug delivery system. Microfluid Nanofluidics. 2007;3(4):377–90.CrossRefGoogle Scholar
  15. Fan B, Song G, Hussain F. Simulation of piezoelectrically actuated valveless micropump. J Smart Mater Struct. 2005;14:400–5.CrossRefGoogle Scholar
  16. Frick TB, et al. Resistance forces acting on suture needles. J Biomech. 2001;34:1335–40.CrossRefPubMedGoogle Scholar
  17. Gardeniers HJGE, et al. Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelctromech Syst. 2003;12(6).Google Scholar
  18. Gere J, Timoshenko S. Mechanics of materials, 4th edn. 1997.Google Scholar
  19. Glasgow I, Lieber S, Aubry N. Parameters influencing pulsed flow mixing in microchannels. Anal Chem. 2004a;76:4825–32.CrossRefPubMedGoogle Scholar
  20. Glasgow I, Batton J, Aubry N. Electroosmotic mixing in microchannels. Lab Chip. 2004b;4:558–62.CrossRefPubMedGoogle Scholar
  21. Griss P, Enoksson P, Tolvanen Laakso HK, Merilainen P, Ollmar S, Stemme G. Micromachined electrodes for biopotential measurements. IEEE ASME J Microelectromech Syst. 2001;10(1):10–6.CrossRefGoogle Scholar
  22. Griss P, Tolvanen Laakso H, Merilainen P, Stemme G. Characterization of micromachined spiked biopotential electrodes. IEEE Trans Biomed Eng. 2002;49(6):597–604.CrossRefPubMedGoogle Scholar
  23. Griss P, et al. Side-opened out of plane microneedles for microfluidics transdermal liquid transfer. J Microelectromech Syst. 2003;12(3):296–301.CrossRefGoogle Scholar
  24. Guo SX, Pei Z, Wang T, Ye XF. A novel type of pulseless output micropump based on magnet-solenoid actuator. In: IEEE/ICME international conference on complex medical engineering. 2007. p. 96–100.Google Scholar
  25. Henry S, et al. Micro machined needles for the transdermal drug delivery of drugs. In: Proceedings of IEEE workshop MEMS. 1998. p. 494–98.Google Scholar
  26. Izzo I, Accoto D, Menciassi A, Schmitt L, Dario P. Modelling and experimental validation of a piezoelectric micropump with novel no-moving-part valves. Sens Actuators A. 2007;133:128–40.CrossRefGoogle Scholar
  27. Jang LS, Li YJ, Lin SJ, Hsu YC, Yao WS, Tsai MC. A stand-alone peristaltic micropump based on piezoelectric actuation. Biomed Microdevices. 2007;9(2):185–94.CrossRefPubMedGoogle Scholar
  28. Janna WS. Design of fluid thermal system. 2nd ed. Boston: PWS Pub.; 1998.Google Scholar
  29. Karande P, Jain A, et al. Discovery of transdermal penetration enhancers by high- throughput screening. Nat Biotechnol. 2004;22:192–7.CrossRefPubMedGoogle Scholar
  30. Khumpuang S, et al. Design and fabrication of coupled microneedle array and insertion guide array for safe penetration through skin. In: International symposium of micromechatronics and human science. 2003.Google Scholar
  31. Kim K, Park D, Lu H, Kim K-H, Lee JB. A tapered hollow metallic microneedle array using backside exposure of SU-8. J Micromech Microeng. 2004;14:597–603.CrossRefGoogle Scholar
  32. Matteucci M, et al. A compact and disposable transdermal drug delivery system. Sincrotrone Trieste, I-34012 Basovizza-Trieste, Italy. 2008.Google Scholar
  33. Moon SJ, Lee SS. A novel fabrication method of a microneedle array using inclined deep x-ray exposure. J Micromech Microeng. 2005;15:903–11.CrossRefGoogle Scholar
  34. Mukherjee EV, et al. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens Actuators A. 2004;114:267–75.CrossRefGoogle Scholar
  35. Nguyen NT, Huang XY, Chuan TK. MEMS-micropumps: a review. J Fluids Eng Trans ASME. 2002;124(2):384–92.CrossRefGoogle Scholar
  36. Nisar A, Afzulpurkar N, Tuantranont A, Mahaisavariya B. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions. Cardiovasc Eng. 2008;8(4):203–18.CrossRefPubMedGoogle Scholar
  37. Oka K, Aoyagi S, Arai Y, Isono Y, Hashiguchi G, Fujita H. Fabrication of a microneedle for a trace blood test. Sens Actuators A. 2002;97–98:478–85.Google Scholar
  38. Paik SJ, et al. In-plane single-crystal-silicon microneedles for minimally invasive micro fluidic systems. Sens Actuators A. 2004;114:276–84.CrossRefGoogle Scholar
  39. Park JH, Davis S, Yoon YK, Allen MG, Prausnitz MR. Micromachined biodegradable microstructures. In: 16th IEEE international conference on microelectro mechanical systems. Kyoto, Japan. 2003. p. 371–74.Google Scholar
  40. Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104(1):51–66.CrossRefPubMedGoogle Scholar
  41. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56:581–7.CrossRefPubMedGoogle Scholar
  42. Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers-dermal and transdermal drug-delivery. J Control Release. 1994;30:1–15.CrossRefGoogle Scholar
  43. Schuetz YB, Naik A, et al. Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opin Drug Deliv. 2005;2:533–48.CrossRefPubMedGoogle Scholar
  44. Shibata T, et al. Fabrication and mechanical characterization of microneedle array for cell surgery. In: Actuators and microsystems conference. 2007. p. 719–22.Google Scholar
  45. Stoeber B, Liepmann D. Fluid injection through out-of-plane microneedles. Micro technologies in medicine and biology. In: 1st annual international conference. Berkeley, CA. 2000.Google Scholar
  46. Stoeber B, Liepmann D. Design, fabrication and testing of a MEMS syringe. Berkeley sensor and actuator center, University of California at Berkeley, CA. 2002.Google Scholar
  47. Sun C, Huang K. Numerical characterization of the flow rectification of dynamic microdiffusers. J Micromech Microeng. 2006;16:1331–9.CrossRefGoogle Scholar
  48. Timoshenko S, Krienger Woinowsky S. Theory of plates and shells. 2nd ed. New York: McGraw-Hill; 1995.Google Scholar
  49. Wang X, et al. A novel fabrication approach for microneedles using silicon micromachining technology. In: 1st IEEE international conference on NEMS. 2006. p. 545–49.Google Scholar
  50. Wang C, Leu T, Sun J. Unsteady analysis of microvalves with no moving parts. J Mech. 2007;23:9–14.Google Scholar
  51. Wilke N, et al. Silicon microneedle electrode array with temperature monitoring for electroporation. Sens Actuators A. 2005a;1090(123–124):319–25.Google Scholar
  52. Wilke N, et al. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Micro Electron J. 2005b;36:650–6.Google Scholar
  53. Yakhot A, Arad M, Ben-Dor G. Numerical investigation of a laminar pulsating flow in a rectangular duct. Int J Numer Methods Fluids. 1999;29:935–50.CrossRefGoogle Scholar
  54. Yao Q, Xu D, Pan L, Teo A, Ho W, Lee V, et al. CFD simulations of flows in valveless micropumps. Eng Appl Comput Fluid Mech. 2007;1:181–8.Google Scholar
  55. Zahn JD, et al. Micro fabricated polysilicon microneedles for minimally invasive biomedical devices. Biomed Microdevices. 2000;2:295–303.CrossRefGoogle Scholar
  56. Zahn JD, et al. Continuous on-chip micropumping for microneedle enhanced drug delivery. Biomed Microdevices. 2004;6(3):183–90.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. W. Ashraf
    • 1
  • S. Tayyaba
    • 1
  • A. Nisar
    • 1
  • N. Afzulpurkar
    • 1
  • D. W. Bodhale
    • 1
  • T. Lomas
    • 2
  • A. Poyai
    • 3
  • A. Tuantranont
    • 2
  1. 1.School of Engineering and TechnologyAsian Institute of Technology (AIT)BangkokThailand
  2. 2.Nanoelectronics and MEMS LabNational Electronics and Computer Technology Center (NECTEC)BangkokThailand
  3. 3.Thai Microelectronics Center (TMEC)BangkokThailand

Personalised recommendations