Diallyl Trisulfide Suppresses Angiotensin II–Induced Vascular Remodeling Via Inhibition of Mitochondrial Fission



We have shown previously that diallyl trisulfide (DATS) ameliorates mitochondrial fission and oxidative stress in a hyperglycemia-induced endothelial apoptosis and diabetic mouse model. The aim of this study was to investigate whether DATS mitigates Ang II-induced vascular smooth muscle cell (VSMC) phenotypic switching and vascular remodeling, and if so, to determine the underlying molecular events.


Male C57BL/6 mice were used to establish a vascular remodeling model by continuous 2-week Ang II infusion using a subcutaneous osmotic pump. Animals were intraperitoneally injected with DATS or vehicle. Physiological parameters, vascular morphology, and molecular markers were assessed. For in vitro studies, VSMCs were pretreated with or without DATS for 1 h, then were stimulated with Ang II, and mitochondrial morphology and phenotypic switching of VSMCs were also measured.


In primary mouse VSMCs, we found that Drp1-dependent mitochondrial fission regulated mitochondrial reactive oxygen species (mtROS) generation, which eventually promoted Ang II-induced VSMC proliferation, migration, and phenotypic switching. Moreover, Ang II was found to up-regulate the Rho-associated coiled coil-containing protein kinase 1 (ROCK1), which regulated mitochondrial fission and VSMC phenotypic switching by phosphorylating Drp1. However, the biological effect of Ang II was abrogated by DATS. Consistent with the effects in VSMCs, we found that DATS markedly alleviated mitochondrial fission, VSMC differentiation, and vessel wall thickening in an animal model of Ang II-induced vascular remodeling, which was regulated by the ROCK1/Drp1 signal.


Our findings showed that DATS mitigated Ang II-induced vascular remodeling by suppressing Drp1-mediated mitochondrial fission in an ROCK1-dependent manner.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Raghavan S, Ho YL, Kini V, Rhee MK, Vassy JL, Gagnon DR, et al. Association between early hypertension control and cardiovascular disease incidence in veterans with diabetes. Diabetes Care. 2019;42(10):1995–2003. https://doi.org/10.2337/dc19-0686.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Heeneman S, Sluimer JC, Daemen MJ. Angiotensin-converting enzyme and vascular remodeling. Circ Res. 2007;101(5):441–54. https://doi.org/10.1161/CIRCRESAHA.107.148338.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell physiol. 2007;292(1):C82–97. https://doi.org/10.1152/ajpcell.00287.2006.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Wong YC, Peng W, Krainc D. Lysosomal regulation of inter-mitochondrial contact fate and motility in Charcot-Marie-tooth type 2. Dev Cell. 2019;50(3):339–54 e4. https://doi.org/10.1016/j.devcel.2019.05.033.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Huang G, Cong Z, Wang X, Yuan Y, Xu R, Lu Z, et al. Targeting HSP90 attenuates angiotensin II-induced adventitial remodeling via suppression of mitochondrial fission. Cardiovasc Res. 2019. https://doi.org/10.1093/cvr/cvz194.

  6. 6.

    Qi J, Wang F, Yang P, Wang X, Xu R, Chen J, et al. Mitochondrial fission is required for angiotensin II-induced Cardiomyocyte apoptosis mediated by a Sirt1-p53 Signaling pathway. Front Pharmacol. 2018;9:176. https://doi.org/10.3389/fphar.2018.00176.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Banerjee SK, Maulik SK. Effect of garlic on cardiovascular disorders: a review. Nutr J. 2002;1:4. https://doi.org/10.1186/1475-2891-1-4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Qi R, Liao F, Inoue K, Yatomi Y, Sato K, Ozaki Y. Inhibition by diallyl trisulfide, a garlic component, of intracellular Ca(2+) mobilization without affecting inositol-1,4, 5-trisphosphate (IP(3)) formation in activated platelets. Biochem Pharmacol. 2000;60(10):1475–83. https://doi.org/10.1016/s0006-2952(00)00467-6.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zhao Y, Bhushan S, Yang C, Otsuka H, Stein JD, Pacheco A, et al. Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury. ACS Chem Biol. 2013;8(6):1283–90. https://doi.org/10.1021/cb400090d.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hao Y, Liu HM, Wei X, Gong X, Lu ZY, Huang ZH. Diallyl trisulfide attenuates hyperglycemia-induced endothelial apoptosis by inhibition of Drp1-mediated mitochondrial fission. Acta Diabetol. 2019;56(11):1177–89. https://doi.org/10.1007/s00592-019-01366-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Yang HB, Liu HM, Yan JC, Lu ZY. Effect of diallyl trisulfide on ischemic tissue injury and revascularization in a diabetic mouse model. J Cardiovasc Pharmacol. 2018;71(6):367–74. https://doi.org/10.1097/FJC.0000000000000579.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Su B, Su J, Zeng Y, Liu F, Xia H, Ma YH, et al. Diallyl disulfide suppresses epithelial-mesenchymal transition, invasion and proliferation by downregulation of LIMK1 in gastric cancer. Oncotarget. 2016;7(9):10498–512. https://doi.org/10.18632/oncotarget.7252.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhou Y, Su J, Shi L, Liao Q, Su Q. DADS downregulates the Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway, inhibiting cell migration and invasion. Oncol Rep. 2013;29(2):605–12. https://doi.org/10.3892/or.2012.2168.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 2012;15(2):186–200. https://doi.org/10.1016/j.cmet.2012.01.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lu L, Kingdom J, Burton GJ, Cindrova-Davies T. Placental stem villus arterial remodeling associated with reduced hydrogen Sulfide synthesis contributes to human Fetal growth restriction. Am J Pathol. 2017;187(4):908–20. https://doi.org/10.1016/j.ajpath.2016.12.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Jovinge S, Hultgardh-Nilsson A, Regnstrom J, Nilsson J. Tumor necrosis factor-alpha activates smooth muscle cell migration in culture and is expressed in the balloon-injured rat aorta. Arterioscler Thromb Vasc Biol. 1997;17(3):490–7. https://doi.org/10.1161/01.atv.17.3.490.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Qi J, Wang JJ, Duan JL, Lu ZY, Yuan YG. Leonurine improves age-dependent impaired angiogenesis: possible involvement of mitochondrial function and HIF-1alpha dependent VEGF activation. Front Pharmacol. 2017;8:284. https://doi.org/10.3389/fphar.2017.00284.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Chuaiphichai S, Rashbrook VS, Hale AB, Trelfa L, Patel J, McNeill E, et al. Endothelial cell tetrahydrobiopterin modulates sensitivity to Ang (angiotensin) II-induced vascular Remodeling, blood pressure, and abdominal aortic aneurysm. Hypertension. 2018;72(1):128–38. https://doi.org/10.1161/HYPERTENSIONAHA.118.11144.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Cui M, Cai Z, Chu S, Sun Z, Wang X, Hu L, et al. Orphan nuclear receptor Nur77 inhibits angiotensin II-induced vascular remodeling via downregulation of beta-catenin. Hypertension. 2016;67(1):153–62. https://doi.org/10.1161/HYPERTENSIONAHA.115.06114.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Wang L, Yu T, Lee H, O’Brien DK, Sesaki H, Yoon Y. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia. Cardiovasc Res. 2015;106(2):272–83. https://doi.org/10.1093/cvr/cvv005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Torres G, Morales PE, Garcia-Miguel M, Norambuena-Soto I, Cartes-Saavedra B, Vidal-Pena G, et al. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol. 2016;104:52–61. https://doi.org/10.1016/j.bcp.2016.01.013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Shimokawa H, Sunamura S, Satoh K. RhoA/rho-kinase in the cardiovascular system. Circ Res. 2016;118(2):352–66. https://doi.org/10.1161/CIRCRESAHA.115.306532.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Shi Y, Fan S, Wang D, Huyan T, Chen J, Chen J, et al. FOXO1 inhibition potentiates endothelial angiogenic functions in diabetes via suppression of ROCK1/Drp1-mediated mitochondrial fission. Biochimica et biophysica acta Mole Basis Dis. 2018;1864(7):2481–94. https://doi.org/10.1016/j.bbadis.2018.04.005.

    CAS  Article  Google Scholar 

  24. 24.

    Liu X, Gao RW, Li M, Si CF, He YP, Wang M, et al. The ROS derived mitochondrial respirstion not from NADPH oxidase plays key role in Celastrol against angiotensin II-mediated HepG2 cell proliferation. Apoptosis. 2016;21(11):1315–26. https://doi.org/10.1007/s10495-016-1294-6.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Polster BM, Nicholls DG, Ge SX, Roelofs BA. Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species. Methods Enzymol. 2014;547:225–50. https://doi.org/10.1016/B978-0-12-801415-8.00013-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Chiong M, Cartes-Saavedra B, Norambuena-Soto I, Mondaca-Ruff D, Morales PE, Garcia-Miguel M, et al. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Front Cell Dev Biol. 2014;2:72. https://doi.org/10.3389/fcell.2014.00072.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lim S, Lee SY, Seo HH, Ham O, Lee C, Park JH, et al. Regulation of mitochondrial morphology by positive feedback interaction between PKCdelta and Drp1 in vascular smooth muscle cell. J Cell Biochem. 2015;116(4):648–60. https://doi.org/10.1002/jcb.25016.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Yu T, Jhun BS, Yoon Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal. 2011;14(3):425–37. https://doi.org/10.1089/ars.2010.3284.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Marsboom G, Toth PT, Ryan JJ, Hong Z, Wu X, Fang YH, et al. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res. 2012;110(11):1484–97. https://doi.org/10.1161/CIRCRESAHA.111.263848.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Chakrabarti R, Ji WK, Stan RV, de Juan SJ, Ryan TA, Higgs HN. INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J Cell Biol. 2018;217(1):251–68. https://doi.org/10.1083/jcb.201709111.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Li S, Xu S, Roelofs BA, Boyman L, Lederer WJ, Sesaki H, et al. Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J Cell Biol. 2015;208(1):109–23. https://doi.org/10.1083/jcb.201404050.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Arita R, Hata Y, Nakao S, Kita T, Miura M, Kawahara S, et al. Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes. 2009;58(1):215–26. https://doi.org/10.2337/db08-0762.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Morgan-Fisher M, Couchman JR, Yoneda A. Phosphorylation and mRNA splicing of collapsin response mediator protein-2 determine inhibition of rho-associated protein kinase (ROCK) II function in carcinoma cell migration and invasion. J Biol Chem. 2013;288(43):31229–40. https://doi.org/10.1074/jbc.M113.505602.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Zhang Q, Hu C, Huang J, Liu W, Lai W, Leng F, et al. ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson’s disease. Exp Mol Med. 2019;51(10):116. https://doi.org/10.1038/s12276-019-0318-z.

    CAS  Article  PubMed Central  Google Scholar 

  35. 35.

    Xu R, Cai A, Zheng D, Qiu R, Li L, Zhou Y, et al. Amlodipine suppresses Ang-II-induced endothelium dysfunction by diminishing ROCK1 expression. Clin Exp Hypertens. 2016;38(2):166–72. https://doi.org/10.3109/10641963.2015.1081212.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci USA. 2007;104(46):17977–82. https://doi.org/10.1073/pnas.0705710104.

    Article  PubMed  Google Scholar 

  37. 37.

    Xie L, Feng H, Li S, Meng G, Liu S, Tang X, et al. SIRT3 mediates the antioxidant effect of hydrogen Sulfide in endothelial cells. Antioxid Redox Signal. 2016;24(6):329–43. https://doi.org/10.1089/ars.2015.6331.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sun A, Wang Y, Liu J, Yu X, Sun Y, Yang F, et al. Exogenous H2S modulates mitochondrial fusion-fission to inhibit vascular smooth muscle cell proliferation in a hyperglycemic state. Cell Biosci. 2016;6:36. https://doi.org/10.1186/s13578-016-0102-x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Al-Magableh MR, Kemp-Harper BK, Hart JL. Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice. Hypertension Res. 2015;38(1):13–20. https://doi.org/10.1038/hr.2014.125.

    CAS  Article  Google Scholar 

  40. 40.

    Bai L, Qi Y, Chen S, Wang J, Tang C, Du J, et al. Angiotensin II downregulates vascular endothelial cell hydrogen sulfide production by enhancing cystathionine gamma-lyase degradation through ROS-activated ubiquitination pathway. Biochem Biophys Res Commun. 2019;514(3):907–12. https://doi.org/10.1016/j.bbrc.2019.05.021.

    CAS  Article  PubMed  Google Scholar 

Download references


This work was supported by the China National Natural Science Foundation (81800171, 81900275), the Natural Science Foundation of Shanxi Province (201801D221273), the Scientific and Technological Innovation Program of Shanxi Higher Education Institution (201804026, 201804027) and Shanxi Provincial Commission of Health and Family Planning (2017053).

Author information




Zhao-Yang Lu performed the experiments, designed study, and analyzed data; Jia Qi and Bin Yang performed the experiments and analyzed data; Hui-Li Cao performed the experiments; Rui-Ying Wang cultured cell; Xuan Wang, Rui-Fang Chi and Chun-Ling Zhang performed the experiments; Zhi-Ming Yang analyzed data; Hui-Min Liu designed study, and wrote the manuscript; Bao Li designed entire research.

Corresponding authors

Correspondence to Zhi-Ming Yang or Hui-Min Liu or Bao Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study conformed to the Guidelines on the Care and Use of Laboratory Animals (NIH Publication no.85–23) and was approved by the Animal Care Committee of the Shanxi Medical University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Qi, J., Yang, B. et al. Diallyl Trisulfide Suppresses Angiotensin II–Induced Vascular Remodeling Via Inhibition of Mitochondrial Fission. Cardiovasc Drugs Ther (2020). https://doi.org/10.1007/s10557-020-07000-1

Download citation


  • Diallyl trisulfide
  • Vascular remodeling
  • Hypertension
  • Drp1
  • Mitochondrial fission