Cardiovascular Drugs and Therapy

, Volume 32, Issue 2, pp 147–163 | Cite as

Pterostilbene Decreases Cardiac Oxidative Stress and Inflammation via Activation of AMPK/Nrf2/HO-1 Pathway in Fructose-Fed Diabetic Rats

  • Ramoji Kosuru
  • Vidya Kandula
  • Uddipak Rai
  • Swati Prakash
  • Zhengyuan Xia
  • Sanjay Singh



Oxidative stress has a pivotal role in the pathogenesis of diabetes-associated cardiovascular problems, which has remained a primary cause of the increased morbidity and mortality in diabetic patients. It is of paramount importance to prevent the diabetes-associated cardiac complications by reducing oxidative stress with the help of nutritional or pharmacological agents. Pterostilbene (PT), the primary antioxidant in blueberries, has recently gained attention for its promising health benefits in metabolic and cardiac diseases. However, the mechanism whereby PT reduces diabetic cardiac complications is currently unknown.


Sprague-Dawley rats were fed with 65% fructose diet with or without PT (20 mg kg−1 day−1) for 8 weeks. Heart rate and blood pressure were measured by tail-cuff apparatus. Real-time PCR and western blot experiments were executed to quantify the expression levels of mRNA and protein, respectively.


Fructose-fed rats demonstrated cardiac hypertrophy, hypertension, enhanced myocardial oxidative stress, inflammation and increased NF-κB expression. Administration of PT significantly decreased cardiac hypertrophy, hypertension, oxidative stress, inflammation, NF-κB expression and NLRP3 inflammasome. We demonstrated that PT improved mitochondrial biogenesis as evidenced by increased protein expression of PGC-1α, complex III and complex V in fructose-fed diabetic rats. Further, PT increased protein expressions of AMPK, Nrf2, HO-1 in cardiac tissues, which may account for the prevention of cardiac oxidative stress and inflammation in fructose-fed rats.


Collectively, PT reduced cardiac oxidative stress and inflammation in diabetic rats through stimulation of AMPK/Nrf2/HO-1 signalling.


AMPK Pterostilbene Nrf2 HO-1 Oxidative stress Inflammation NLRP3 inflammasome 





5′ adenosine monophosphate-activated protein kinase


Superoxide dismutase


Reduced glutathione


Glutathione peroxidase


Reactive oxygen species


Thiobarbituric acid reactive substances




Nuclear factor- κB




Tumour necrosis factor-α


Lactate dehydrogenase


Creatine kinase-MB


Aspartate aminotransferase


Mean arterial pressure


Enzyme-linked immunosorbent assay


Polymerase chain reaction


Peroxisome proliferator-activated receptor gamma coactivator


Nuclear factor erythroid 2–related factor 2


Glyceraldehyde 3-phosphate dehydrogenase




Fructose-fed diabetic


Nucleotide-binding oligomerisation domain-like receptor (NLR) protein 3


The adapter protein apoptosis-associated speck-like protein containing caspase recruitment domain


Toll-like receptor 4


Compound C


Thioredoxin-interacting protein.



Ramoji Kosuru was supported by the Indian Institute of Technology (Banaras Hindu University), Varanasi for providing Teaching Assistantship funded by Ministry of Human Resource Development, Government of India. We gratefully acknowledge the Sami Labs Limited, Bangalore, India, for providing pterostilbene as a generous gift sample.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The current investigation was performed in agreement with the principles of the Guide for the Care and Use of Laboratory Animals, published by the National Institutes of Health (NIH publication no. 86–23, revised 1996), and the experiments were approved by the Institutional Animal Ethical Committee of Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, India.

Informed Consent

This study was not a clinical research and therefore consent for participate was not needed.

Consent for Publication

All authors have approved the submission for publication of the work.


  1. 1.
    Cozma AI, Sievenpiper JL, de Souza RJ, Chiavaroli L, Ha V, Wang DD, et al. Effect of fructose on glycemic control in diabetes. A systematic review and meta-analysis of controlled feeding trials. Diabetes Care. 2012;35(7):1611–20.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hwang IS, Ho H, Hoffman BB, Reaven GM. Fructose-induced insulin resistance and hypertension in rats. Hypertension. 1987;10(5):512–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Kosuru R, Singh S. Pterostilbene ameliorates insulin sensitivity, glycemic control and oxidative stress in fructose-fed diabetic rats. Life Sci. 2017;182:112–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang Y-B, Meng Y-H, Chang S, Zhang R-Y, Shi C. High fructose causes cardiac hypertrophy via mitochondrial signaling pathway. Am J Transl Res. 2016;8(11):4869–80.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Cioffi F, Senese R, Lasala P, Ziello A, Mazzoli A, Crescenzo R, et al. Fructose-rich diet affects mitochondrial DNA damage and repair in rats. Nutrients. 2017;9(4):323.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A. 2002;99(25):15983–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bonnard C, Durand A, Vidal H, Rieusset J. Changes in adiponectin, its receptors and AMPK activity in tissues of diet-induced diabetic mice. Diabetes Metab. 2008;34(1):52–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Axelsen LN, Lademann JB, Petersen JS, Holstein-Rathlou N-H, Ploug T, Prats C, et al. Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am J Physiol Regul Integr Comp Physiol. 2010;298(6):R1560–70.CrossRefPubMedGoogle Scholar
  9. 9.
    Mo C, Wang L, Zhang J, Numazawa S, Tang H, Tang X, et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid Redox Signal. 2014;20(4):574–88.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu XM, Peyton KJ, Shebib AR, Wang H, Korthuis RJ, Durante W. Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival. Am J Phys Heart Circ Phys. 2011;300(1):H84–93.Google Scholar
  11. 11.
    Cao K, Zheng A, Xu J, Li H, Liu J, Peng Y, et al. AMPK activation prevents prenatal stress-induced cognitive impairment: modulation of mitochondrial content and oxidative stress. Free Radic Biol Med. 2014;75:156–66.CrossRefPubMedGoogle Scholar
  12. 12.
    Elango B, Dornadula S, Paulmurugan R, Ramkumar KM. Pterostilbene ameliorates streptozotocin-induced diabetes through enhancing antioxidant signaling pathways mediated by Nrf2. Chem Res Toxicol. 2016;29(1):47–57.CrossRefPubMedGoogle Scholar
  13. 13.
    Gomez-Zorita S, Fernandez-Quintela A, Aguirre L, Macarulla MT, Rimando AM, Portillo MP. Pterostilbene improves glycaemic control in rats fed an obesogenic diet: involvement of skeletal muscle and liver. Food Funct. 2015;6(6):1968–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Yu Z, Wang S, Zhang X, Li Y, Zhao Q, Liu T. Pterostilbene protects against myocardial ischemia/reperfusion injury via suppressing oxidative/nitrative stress and inflammatory response. Int Immunopharmacol. 2017;43:7–15.CrossRefPubMedGoogle Scholar
  15. 15.
    Kosuru R, Rai U, Prakash S, Singh A, Singh S. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur J Pharmacol. 2016;789:229–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Yang Y, Wang J, Li Y, Fan C, Jiang S, Zhao L, et al. HO-1 signaling activation by pterostilbene treatment attenuates mitochondrial oxidative damage induced by cerebral ischemia reperfusion injury. Mol Neurobiol. 2016;53(4):2339–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Gomez-Zorita S, Fernandez-Quintela A, Lasa A, Aguirre L, Rimando AM, Portillo MP. Pterostilbene, a dimethyl ether derivative of resveratrol, reduces fat accumulation in rats fed an obesogenic diet. J Agric Food Chem. 2014;62(33):8371–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Maity P, Bindu S, Dey S, Goyal M, Alam A, Pal C, et al. Indomethacin, a non-steroidal anti-inflammatory drug, develops gastropathy by inducing reactive oxygen species-mediated mitochondrial pathology and associated apoptosis in gastric mucosa: a novel role of mitochondrial aconitase oxidation. J Biol Chem. 2009;284(5):3058–68.CrossRefPubMedGoogle Scholar
  19. 19.
    Badole SL, Chaudhari SM, Jangam GB, Kandhare AD, Bodhankar SL. Cardioprotective activity of Pongamia pinnata in streptozotocin-nicotinamide induced diabetic rats. Biomed Res Int. 2015;2015:403291.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Golbidi S, Botta A, Gottfred S, Nusrat A, Laher I, Ghosh S. Glutathione administration reduces mitochondrial damage and shifts cell death from necrosis to apoptosis in ageing diabetic mice hearts during exercise. Br J Pharmacol. 2014;171(23):5345–60.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15(1):71.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mariappan N, Elks CM, Sriramula S, Guggilam A, Liu Z, Borkhsenious O, et al. NF-kappaB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc Res. 2010;85(3):473–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012;481:278–86.CrossRefPubMedGoogle Scholar
  25. 25.
    Okonko DO, Shah AM. Heart failure: mitochondrial dysfunction and oxidative stress in CHF. Nat Rev Cardiol. 2015;12(1):6–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73:3221–47.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zimmermann K, Baldinger J, Mayerhofer B, Atanasov AG, Dirsch VM, Heiss EH. Activated AMPK boosts the Nrf2/HO-1 signaling axis—a role for the unfolded protein response. Free Radic Biol Med. 2015;88(Pt B):417–26.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    McCormack D, McFadden D. A review of pterostilbene antioxidant activity and disease modification. Oxidative Med Cell Longev. 2013;2013:15.CrossRefGoogle Scholar
  29. 29.
    Lehrke M, Marx N. Diabetes mellitus and heart failure. Am J Cardiol. 2017;120(1, Supplement):S37–47.CrossRefPubMedGoogle Scholar
  30. 30.
    Kamide K, Rakugi H, Higaki J, Okamura A, Nagai M, Moriguchi K, et al. The renin-angiotensin and adrenergic nervous system in cardiac hypertrophy in fructose-fed rats. Am J Hypertens. 2002;15(1 Pt 1):66–71.CrossRefPubMedGoogle Scholar
  31. 31.
    Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol J-P, et al. Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis. 2005;179(1):43–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Manickam M, Ramanathan M, Jahromi MA, Chansouria JP, Ray AB. Antihyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod. 1997;60(6):609–10.CrossRefPubMedGoogle Scholar
  33. 33.
    Riche DM, Riche KD, Blackshear CT, McEwen CL, Sherman JJ, Wofford MR, et al. Pterostilbene on metabolic parameters: a randomized, double-blind, and placebo-controlled trial. Evid Based Complement Alternat Med: eCAM. 2014;2014:1–8.CrossRefGoogle Scholar
  34. 34.
    Hinderliter A, Sherwood A, Gullette EC, Babyak M, Waugh R, Georgiades A, et al. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Arch Intern Med. 2002;162(12):1333–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Rebollo A, Roglans N, Alegret M, Laguna JC. Way back for fructose and liver metabolism: bench side to molecular insights. World J Gastroenterol. 2012;18(45):6552–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cheng PW, Ho WY, Su YT, Lu PJ, Chen BZ, Cheng WH, et al. Resveratrol decreases fructose-induced oxidative stress, mediated by NADPH oxidase via an AMPK-dependent mechanism. Br J Pharmacol. 2014;171(11):2739–50.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cao K, Xu J, Pu W, Dong Z, Sun L, Zang W, et al. Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation. Sci Rep. 2015;5:14014.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med Cell Longev. 2016;2016:7432797.CrossRefGoogle Scholar
  39. 39.
    Kumar R, Yong QC, Thomas CM. Do multiple nuclear factor kappa B activation mechanisms explain its varied effects in the heart? Ochsner J. 2013;13(1):157–65.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Maier HJ, Schips TG, Wietelmann A, Krüger M, Brunner C, Sauter M, et al. Cardiomyocyte-specific IκB kinase (IKK)/NF-κB activation induces reversible inflammatory cardiomyopathy and heart failure. Proc Natl Acad Sci. 2012;109(29):11794–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jancso G, Lantos J, Borsiczky B, Szanto Z, Roth E. Dynamism of NF-kappaB and AP-1 activation in the signal transduction of ischaemic myocardial preconditioning. Eur Surg Res. 2004;36(3):129–35.CrossRefPubMedGoogle Scholar
  42. 42.
    Boaru SG, Borkham-Kamphorst E, Van de Leur E, Lehnen E, Liedtke C, Weiskirchen R. NLRP3 inflammasome expression is driven by NF-kappaB in cultured hepatocytes. Biochem Biophys Res Commun. 2015;458(3):700–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Gurung P, Li B, Subbarao Malireddi RK, Lamkanfi M, Geiger TL, Kanneganti T-D. Chronic TLR stimulation controls NLRP3 inflammasome activation through IL-10 mediated regulation of NLRP3 expression and caspase-8 activation. Sci Rep. 2015;5:14488.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wen H, Ting JPY, O'Neill LAJ. A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation? Nat Immunol. 2012;13:352–7.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123(6):594–604.CrossRefPubMedGoogle Scholar
  47. 47.
    Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179–88.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang W, Ding XQ, Gu TT, Song L, Li JM, Xue QC, et al. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377. Free Radic Biol Med. 2015;83:214–26.CrossRefPubMedGoogle Scholar
  49. 49.
    Liu H, Zhao L, Yue L, Wang B, Li X, Guo H, et al. Pterostilbene attenuates early brain injury following subarachnoid hemorrhage via inhibition of the NLRP3 inflammasome and Nox2-related oxidative stress. Mol Neurobiol. 2017;54(8):5928–40.CrossRefPubMedGoogle Scholar
  50. 50.
    Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, et al. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes. 2007;56(10):2457–66.CrossRefPubMedGoogle Scholar
  51. 51.
    Russell LK, Mansfield CM, Lehman JJ, Kovacs A, Courtois M, Saffitz JE, et al. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res. 2004;94(4):525–33.CrossRefPubMedGoogle Scholar
  52. 52.
    Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259–71.CrossRefPubMedGoogle Scholar
  53. 53.
    Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, et al. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006;55(1):120–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Woods A, Williams JR, Muckett PJ, Mayer FV, Liljevald M, Bohlooly YM, et al. Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Rep. 2017;18(13):3043–51.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bouchard-Thomassin AA, Lachance D, Drolet MC, Couet J, Arsenault M. A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload. Am J Phys Heart Circ Phys. 2011;300(1):H125–34.Google Scholar
  56. 56.
    Nigro D, Menotti F, Cento AS, Serpe L, Chiazza F, Dal Bello F, et al. Chronic administration of saturated fats and fructose differently affect SREBP activity resulting in different modulation of Nrf2 and Nlrp3 inflammasome pathways in mice liver. J Nutr Biochem. 2017;42:160–71.CrossRefPubMedGoogle Scholar
  57. 57.
    Piantadosi CA, Carraway MS, Babiker A, Suliman HB. Heme Oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory Factor-1. Circ Res. 2008;103(11):1232–40.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhao C, Gillette DD, Li X, Zhang Z, Wen H. Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J Biol Chem. 2014;289(24):17020–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hou Y, Wang Y, He Q, Li L, Xie H, Zhao Y, et al. Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav Brain Res. 2018;336:32–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Greaney AJ, Maier NK, Leppla SH, Moayeri M. Sulforaphane inhibits multiple inflammasomes through an Nrf2-independent mechanism. J Leukoc Biol. 2016;99(1):189–99.CrossRefPubMedGoogle Scholar
  61. 61.
    Maier NK, Leppla SH, Moayeri M. The cyclopentenone prostaglandin 15d-PGJ<sub>2</sub> inhibits the NLRP1 and NLRP3 inflammasomes. J Immunol. 2015;194(6):2776–85.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Liu X, Zhou W, Zhang X, Lu P, Du Q, Tao L, et al. Dimethyl fumarate ameliorates dextran sulfate sodium-induced murine experimental colitis by activating Nrf2 and suppressing NLRP3 inflammasome activation. Biochem Pharmacol. 2016;112:37–49.CrossRefPubMedGoogle Scholar
  63. 63.
    Garstkiewicz M, Strittmatter GE, Grossi S, Sand J, Fenini G, Werner S, et al. Opposing effects of Nrf2 and Nrf2-activating compounds on the NLRP3 inflammasome independent of Nrf2-mediated gene expression. Eur J Immunol. 2017;47(5):806–17.CrossRefPubMedGoogle Scholar
  64. 64.
    Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bhakkiyalakshmi E, Shalini D, Sekar TV, Rajaguru P, Paulmurugan R, Ramkumar KM. Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2. Br J Pharmacol. 2014;171(7):1747–57.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ruiz MJ, Fernandez M, Pico Y, Manes J, Asensi M, Carda C, et al. Dietary administration of high doses of pterostilbene and quercetin to mice is not toxic. J Agric Food Chem. 2009;57(8):3180–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Gu XS, Wang ZB, Ye Z, Lei JP, Li L, Su DF, et al. Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. Genet Mol Res: GMR. 2014;13(1):323–35.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical Engineering & TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  2. 2.Department of Anaesthesiology, Li Ka Shing Faculty of MedicineThe University of Hong KongPok Fu LamHong Kong

Personalised recommendations