GLP-1 Receptor Agonists and Cardiovascular Disease: a Meta-Analysis of Recent Cardiac Outcome Trials

  • Xiaoming Jia
  • Mahboob Alam
  • Yumei Ye
  • Mandeep Bajaj
  • Yochai Birnbaum
ORIGINAL ARTICLE

Abstract

Purpose

The aim of this study is to examine the cardioprotective properties of Glucagon-like peptide-1 receptor agonist, a class of antihyperglycemic therapy, via meta-analysis of four recently published cardiovascular outcomes trials.

Methods

Meta-analysis was performed pooling data from the ELIXA, LEADER, SUSTAIN-6 and EXSCEL trials. A random effects model was used to generate risk ratio with 95% confidence interval for cardiovascular and safety outcomes.

Results

A total of 33,457 patients were included in the meta-analysis. Based on the study, GLP-1R agonists significantly reduced all-cause mortality (RR 0.89; 95% CI 0.82 to 0.96) and cardiovascular mortality (RR 0.88; 95% CI 0.80 to 0.97) when compared to placebo. When long-acting agents were analyzed alone, reduction in major adverse cardiac events (RR 0.88; 95% CI 0.81 to 0.97) and non-fatal strokes (RR 0.87; 95% CI 0.76 to 0.99) also showed significance.

Conclusion

Overall, GLP-1R agonists appear to have cardioprotective properties likely via modification of metabolic parameters such as glycemic control, weight loss, and improvement in blood pressure. Additional studies are warranted to compare cardiovascular outcomes among the different agents.

Keywords

GLP-1 receptor agonist Type 2 diabetes mellitus Cardiovascular outcomes 

Notes

Compliance with Ethical Standards

Conflict of Interest

Yochai Birnbaum has received research grants from AstraZeneca, Boehringer Ingelheim. He has received lecture fees from Daiichi Sankyo and AstraZeneca. Yumei Ye has received research grants from AstraZeneca, Boehringer Ingelheim. Author Mandeep Bajaj has received research grants from Amylin, AstraZeneca, Boehringer Ingelheim, Eli-Lilly, Sanofi Aventis, and Novo Nordisk. Xiaoming Jia declares he has no conflicts of interest. Mahboob Alam declares he no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10557_2018_6773_MOESM1_ESM.pdf (338 kb)
ESM 1 (PDF 338 kb)

References

  1. 1.
    Scheen AJ, Esser N, Paquot N. Antidiabetic agents: potential anti-inflammatory activity beyond glucose control. Diabetes Metab. 2015;41(3):183–94.CrossRefPubMedGoogle Scholar
  2. 2.
    Kothari V, Galdo JA, Mathews ST. Hypoglycemic agents and potential anti-inflammatory activity. J Inflamm Res. 2016;9:27–38.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Buldak L, Machnik G, Buldak RJ, Labuzek K, Boldys A, Belowski D, et al. Exenatide (a GLP-1 agonist) expresses anti-inflammatory properties in cultured human monocytes/macrophages in a protein kinase a and B/Akt manner. Pharmacol Rep. 2016;68(2):329–37.CrossRefPubMedGoogle Scholar
  4. 4.
    Nagayama K, Kyotani Y, Zhao J, Ito S, Ozawa K, Bolstad FA, et al. Exendin-4 prevents vascular smooth muscle cell proliferation and migration by angiotensin II via the inhibition of ERK1/2 and JNK signaling pathways. PLoS One. 2015;10(9):e0137960.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dai Y, Dai D, Wang X, Ding Z, Li C, Mehta JL. GLP-1 agonists inhibit ox-LDL uptake in macrophages by activating protein kinase A. J Cardiovasc Pharmacol. 2014;64(1):47–52.CrossRefPubMedGoogle Scholar
  6. 6.
    Gaspari T, Welungoda I, Widdop RE, Simpson RW, Dear AE. The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE(−/−) mouse model. Diab Vasc Dis Res. 2013;10(4):353–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Birnbaum Y, Ye Y, Bajaj M. Myocardial protection against ischemia-reperfusion injury by GLP-1: molecular mechanisms. Metab Syndr Relat Disord. 2012;10(6):387–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Yoon AH, Ye Y, Birnbaum Y. Dipeptidyl peptidase IV inhibitors and ischemic myocardial injury. J Cardiovasc Pharmacol Ther. 2014;19(5):417–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Younce CW, Burmeister MA, Ayala JE. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Physiol Cell Physiol. 2013;304(6):C508–18.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhou Y, He X, Chen Y, Huang Y, Wu L, He J. Exendin-4 attenuates cardiac hypertrophy via AMPK/mTOR signaling pathway activation. Biochem Biophys Res Commun. 2015;468(1–2):394–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang LH, Pang XF, Bai F, Wang NP, Shah AI, McKallip RJ, et al. Preservation of glucagon-like peptide-1 level attenuates angiotensin II-induced tissue fibrosis by altering AT1/AT 2 receptor expression and angiotensin-converting enzyme 2 activity in rat heart. Cardiovasc Drugs Ther. 2015;29(3):243–55.CrossRefPubMedGoogle Scholar
  12. 12.
    Munaf M, Pellicori P, Allgar V, Wong K. A meta-analysis of the therapeutic effects of glucagon-like peptide-1 agonist in heart failure. Int J Pept. 2012;2012(249827):1–7.CrossRefGoogle Scholar
  13. 13.
    Vyas AK, Yang KC, Woo D, Tzekov A, Kovacs A, Jay PY, et al. Exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy. PLoS One. 2011;6(2):e17178.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Potts JE, Gray LJ, Brady EM, Khunti K, Davies MJ, Bodicoat DH. The effect of glucagon-like peptide 1 receptor agonists on weight loss in type 2 diabetes: a systematic review and mixed treatment comparison meta-analysis. PLoS One. 2015;10(6):e0126769.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344(jan10 2):d7771.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang B, Zhong J, Lin H, Zhao Z, Yan Z, He H, et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab. 2013;15(8):737–49.CrossRefPubMedGoogle Scholar
  17. 17.
    Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16(1):38–47.CrossRefPubMedGoogle Scholar
  18. 18.
    Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Kober LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.CrossRefPubMedGoogle Scholar
  19. 19.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016;375(4):311–22.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016;375(19):1834–44.CrossRefPubMedGoogle Scholar
  21. 21.
    Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.CrossRefPubMedGoogle Scholar
  22. 22.
    Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33(12):1491–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Lonborg J, Kelbaek H, Vejlstrup N, Botker HE, Kim WY, Holmvang L, et al. Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ Cardiovasc Interv. 2012;5(2):288–95.CrossRefPubMedGoogle Scholar
  24. 24.
    Bernink FJ, Timmers L, Diamant M, Scholte M, Beek AM, Kamp O, et al. Effect of additional treatment with EXenatide in patients with an acute myocardial infarction: the EXAMI study. Int J Cardiol. 2013;167(1):289–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail. 2008;1(3):153–60.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hausenloy DJ, Yellon DM. GLP-1 therapy: beyond glucose control. Circ Heart Fail. 2008;1(3):147–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2016;316(5):500–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hendarto H, Inoguchi T, Maeda Y, Ikeda N, Zheng J, Takei R, et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism. 2012;61(10):1422–34.CrossRefPubMedGoogle Scholar
  29. 29.
    Ishibashi Y, Matsui T, Ojima A, Nishino Y, Nakashima S, Maeda S, et al. Glucagon-like peptide-1 inhibits angiotensin II-induced mesangial cell damage via protein kinase A. Microvasc Res. 2012;84(3):395–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Ishibashi Y, Nishino Y, Matsui T, Takeuchi M, Yamagishi S. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metabolism. 2011;60(9):1271–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Kodera R, Shikata K, Kataoka HU, Takatsuka T, Miyamoto S, Sasaki M, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011;54(4):965–78.CrossRefPubMedGoogle Scholar
  32. 32.
    Ojima A, Ishibashi Y, Matsui T, Maeda S, Nishino Y, Takeuchi M, et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am J Pathol. 2013;182(1):132–41.CrossRefPubMedGoogle Scholar
  33. 33.
    Park CW, Kim HW, Ko SH, Lim JH, Ryu GR, Chung HW, et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol. 2007;18(4):1227–38.CrossRefPubMedGoogle Scholar
  34. 34.
    Liu H, Dear AE, Knudsen LB, Simpson RW. A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol. 2009;201(1):59–66.CrossRefPubMedGoogle Scholar
  35. 35.
    Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes. Diabetes. 2012;61(11):2967–79.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728–42.CrossRefPubMedGoogle Scholar
  37. 37.
  38. 38.
    Victoza (liraglutide [rDNA origin] injection - FDA 2010 [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022341lbl.pdf.
  39. 39.
    Fineman M, Flanagan S, Taylor K, Aisporna M, Shen LZ, Mace KF, et al. Pharmacokinetics and pharmacodynamics of exenatide extended-release after single and multiple dosing. Clin Pharmacokinet. 2011;50(1):65–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Blevins T, Pullman J, Malloy J, Yan P, Taylor K, Schulteis C, et al. DURATION-5: exenatide once weekly resulted in greater improvements in glycemic control compared with exenatide twice daily in patients with type 2 diabetes. J Clin Endocrinol Metab. 2011;96(5):1301–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Htike ZZ, Zaccardi F, Papamargaritis D, Webb DR, Khunti K, Davies MJ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab. 2017;19(4):524–36.CrossRefPubMedGoogle Scholar
  42. 42.
    Buse JB, Nauck M, Forst T, Sheu WH, Shenouda SK, Heilmann CR, et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet. 2013;381(9861):117–24.CrossRefPubMedGoogle Scholar
  43. 43.
    Uccellatore A, Genovese S, Dicembrini I, Mannucci E, Ceriello A. Comparison review of short-acting and long-acting glucagon-like peptide-1 receptor agonists. Diabetes Ther. 2015;6(3):239–56.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Werner U. Effects of the GLP-1 receptor agonist lixisenatide on postprandial glucose and gastric emptying—preclinical evidence. J Diabetes Complicat. 2014;28(1):110–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Pabreja K, Mohd MA, Koole C, Wootten D, Furness SG. Molecular mechanisms underlying physiological and receptor pleiotropic effects mediated by GLP-1R activation. Br J Pharmacol. 2014;171(5):1114–28.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Herzlinger S, Horton ES. Extraglycemic effects of glp-1-based therapeutics: addressing metabolic and cardiovascular risks associated with type 2 diabetes. Diabetes Res Clin Pract. 2013;100(1):1–10.CrossRefPubMedGoogle Scholar
  47. 47.
    Birnbaum Y, Ye Y, Bajaj M. Type 2 diabetes and cardiovascular disease: a metabolic overview of recent clinical trials. J Diabetes Complicat. 2017;31(2):291–4.CrossRefPubMedGoogle Scholar
  48. 48.
    Ratner RE, Rosenstock J, Boka G, Investigators DRIS. Dose-dependent effects of the once-daily GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled trial. Diabet Med. 2010;27(9):1024–32.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Buse JB, Garber A, Rosenstock J, Schmidt WE, Brett JH, Videbaek N, et al. Liraglutide treatment is associated with a low frequency and magnitude of antibody formation with no apparent impact on glycemic response or increased frequency of adverse events: results from the liraglutide effect and action in diabetes (LEAD) trials. J Clin Endocrinol Metab. 2011;96(6):1695–702.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Section of Cardiology, Department of MedicineBaylor College of Medicine, One Baylor PlazaHoustonUSA
  2. 2.The Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Endocrinology and Diabetes Division, Department of MedicineBaylor College of MedicineHoustonUSA

Personalised recommendations