Skip to main content
Log in

Pharmacological Agents Targeting Myocardial Metabolism for the Management of Chronic Stable Angina : an Update

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Despite continuous advances in myocardial revascularization procedures and intracoronary devices, patients with ischemic heart disease (IHD) still experience worse prognosis and poor quality of life (QoL). Indeed, chronic stable angina (CSA) is a common disease with a large burden on healthcare costs. Traditionally, CSA is interpreted as episodes of reversible myocardial ischemia related to the presence of stable coronary artery plaque causing myocardial demand/supply mismatch when myocardial oxygen consumption increases. Accordingly, revascularization procedures are performed with the aim to remove the flow limiting stenosis, whereas traditional medical therapy (hemodynamic agents) aims at reducing myocardial oxygen demands. However, although effective, none of these treatment strategies or their combination is either able to confer symptomatic relief in all patients, nor to reduce mortality. Failure to significantly improve QoL and prognosis may be attributed at least in part to this “restrictive” understanding of IHD. Despite for many years myocardial metabolic derangement has been overlooked, recently it has gained increased attention with the development of new pharmacological agents (metabolic modulators) able to influence myocardial substrate selection and utilization thus improving cardiac efficiency. Shifting cardiac metabolism from free fatty acids (FA) towards glucose is a promising approach for the treatment of patients with stable angina, independently of the underling disease (macrovascular and/or microvascular disease). In this sense cardiac metabolic modulators open the way to a “revolutionary” understanding of ischemic heart disease and its common clinical manifestations, where myocardial ischemia is no longer considered as the mere oxygen and metabolites demand/supply unbalance, but as an energetic disorder. Keeping in mind such an alternative approach to the disease, development of new pharmacological agents directed toward multiple metabolic targets is mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T, Di Mario C, Ferreira JR, Gersh BJ, Gitt AK, Hulot JS, Marx N, Opie LH, Pfisterer M, Prescott E, Ruschitzka F, Sabate M, Senior R, Taggart DP, van der Wall EE, Vrints CJ, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Knuuti J, Valgimigli M, Bueno H, Claeys MJ, Donner-Banzhoff N, Erol C, Frank H, Funck-Brentano C, Gaemperli O, Gonzalez-Juanatey JR, Hamilos M, Hasdai D, Husted S, James SK, Kervinen K, Kolh P, Kristensen SD, Lancellotti P, Maggioni AP, Piepoli MF, Pries AR, Romeo F, Ryden L, Simoons ML, Sirnes PA, Steg PG, Timmis A, Wijns W, Windecker S, Yildirir A, Zamorano JL. ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.

    Article  PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2014;131:e29–322.

    Article  PubMed  Google Scholar 

  3. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB: Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation 2013;127:e6-e245.

  4. Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, Daly C, De Backer G, Hjemdahl P, Lopez-Sendon J, Marco J, Morais J, Pepper J, Sechtem U, Simoons M, Thygesen K, Priori SG, Blanc JJ, Budaj A, Camm J, Dean V, Deckers J, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo J, Zamorano JL. Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J. 2006;27:1341–81.

    Article  PubMed  Google Scholar 

  5. Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Spertus JA, Berman DS, Mancini GB, Weintraub WS. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.

    Article  CAS  PubMed  Google Scholar 

  6. Five-year clinical and functional outcome comparing bypass surgery and angioplasty in patients with multivessel coronary disease. A multicenter randomized trial. Writing Group for the Bypass Angioplasty Revascularization Investigation (BARI) Investigators. JAMA 1997;277:715–721.

  7. Marzilli M, Huqi A, Morrone D. Persistent angina: the araba phoenix of cardiology. Am J Cardiovasc Drugs. 2010;10(Suppl 1):27–32.

    Article  PubMed  Google Scholar 

  8. Marzilli M, Merz CN, Boden WE, Bonow RO, Capozza PG, Chilian WM, DeMaria AN, Guarini G, Huqi A, Morrone D, Patel MR, Weintraub WS. Obstructive coronary atherosclerosis and ischemic heart disease: an elusive link! J Am Coll Cardiol. 2012;60:951–6.

    Article  PubMed  Google Scholar 

  9. Pepine CJ, Douglas PS. Rethinking stable ischemic heart disease: is this the beginning of a new era? J Am Coll Cardiol. 2012;60:957–9.

    Article  PubMed  Google Scholar 

  10. Fihn SD, Blankenship JC, Alexander KP, Bittl JA, Byrne JG, Fletcher BJ, Fonarow GC, Lange RA, Levine GN, Maddox TM, Naidu SS, Ohman EM, Smith PK. ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2014;130:1749–67.

    Article  PubMed  Google Scholar 

  11. Marzilli M, Affinito S. Meeting the challenge of chronic ischaemic heart disease with trimetazidine. Coron Artery Dis. 2005;16(Suppl 1):S23–7.

    Article  PubMed  Google Scholar 

  12. Guarini G, Huqi A, Morrone D, Capozza P, Todiere G, Marzilli M. Pharmacological approaches to coronary microvascular dysfunction. Pharmacol Ther. 2014;144:283–302.

    Article  CAS  PubMed  Google Scholar 

  13. Guarini G, Huqi A, Capozza P, Morrone D, Donati F, Marzilli M. Therapy against ischemic injury. Curr Pharm Des. 2013;19:4597–621.

    Article  CAS  PubMed  Google Scholar 

  14. Wolff AA, Rotmensch HH, Stanley WC, Ferrari R. Metabolic approaches to the treatment of ischemic heart disease: the clinicians' perspective. Heart Fail Rev. 2002;7:187–203.

    Article  CAS  PubMed  Google Scholar 

  15. Wimmer NJ, Stone PH. Anti-anginal and anti-ischemic effects of late sodium current inhibition. Cardiovasc Drugs Ther. 2013;27:69–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stanley WC, Sabbah HN. Metabolic therapy for ischemic heart disease: the rationale for inhibition of fatty acid oxidation. Heart Fail Rev. 2005;10:275–9.

    Article  PubMed  Google Scholar 

  17. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res. 1997;33:243–57.

    Article  CAS  PubMed  Google Scholar 

  18. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–129.

    Article  CAS  PubMed  Google Scholar 

  19. Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta. 1813;2011:1333–50.

    Google Scholar 

  20. Rupp H, Zarain-Herzberg A, Maisch B. The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz. 2002;27:621–36.

    Article  PubMed  Google Scholar 

  21. Stanley WC. Partial fatty acid oxidation inhibitors for stable angina. Expert Opin Investig Drugs. 2002;11:615–29.

    Article  CAS  PubMed  Google Scholar 

  22. Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab. 2003;284:E855–62.

    Article  CAS  PubMed  Google Scholar 

  23. Spriet LL, Heigenhauser GJ. Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Exerc Sport Sci Rev. 2002;30:91–5.

    Article  PubMed  Google Scholar 

  24. McVeigh JJ, Lopaschuk GD. Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Phys. 1990;259:H1079–85.

    CAS  Google Scholar 

  25. Bergman G, Atkinson L, Metcalfe J, Jackson N, Jewitt DE. Beneficial effect of enhanced myocardial carbohydrate utilisation after oxfenicine (L-hydroxyphenylglycine) in angina pectoris. Eur Heart J. 1980;1:247–53.

    Article  CAS  PubMed  Google Scholar 

  26. Cole PL, Beamer AD, McGowan N, Cantillon CO, Benfell K, Kelly RA, Hartley LH, Smith TW, Antman EM. Efficacy and safety of perhexiline maleate in refractory angina. A double-blind placebo-controlled clinical trial of a novel antianginal agent. Circulation. 1990;81:1260–70.

    Article  CAS  PubMed  Google Scholar 

  27. Klassen GA, Zborowska-Sluis DT, Wright GJ. Effects of oral perhexiline on canine myocardial flow distribution. Can J Physiol Pharmacol. 1980;58:543–9.

    Article  CAS  PubMed  Google Scholar 

  28. Unger SA, Kennedy JA, McFadden-Lewis K, Minerds K, Murphy GA, Horowitz JD. Dissociation between metabolic and efficiency effects of perhexiline in normoxic rat myocardium. J Cardiovasc Pharmacol. 2005;46:849–55.

    Article  CAS  PubMed  Google Scholar 

  29. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, Ashrafian H, Horowitz J, Fraser AG, Clarke K, Frenneaux M. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112:3280–8.

    Article  CAS  PubMed  Google Scholar 

  30. Beadle RM, Williams LK, Kuehl M, Bowater S, Abozguia K, Leyva F, Yousef Z, Wagenmakers AJ, Thies F, Horowitz J, Frenneaux MP. Improvement in cardiac energetics by perhexiline in heart failure due to dilated cardiomyopathy. JACC Heart Fail. 2015;3:202–11.

    Article  PubMed  Google Scholar 

  31. Barclay ML, Sawyers SM, Begg EJ, Zhang M, Roberts RL, Kennedy MA, Elliott JM. Correlation of CYP2D6 genotype with perhexiline phenotypic metabolizer status. Pharmacogenetics. 2003;13:627–32.

    Article  CAS  PubMed  Google Scholar 

  32. Maarman G, Marais E, Lochner A, du Toit EF. Effect of chronic CPT-1 inhibition on myocardial ischemia-reperfusion injury (I/R) in a model of diet-induced obesity. Cardiovasc Drugs Ther. 2012;26:205–16.

    Article  CAS  PubMed  Google Scholar 

  33. Lionetti V, Linke A, Chandler MP, Young ME, Penn MS, Gupte S, d'Agostino C, Hintze TH, Stanley WC, Recchia FA. Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res. 2005;66:454–61.

    Article  CAS  PubMed  Google Scholar 

  34. Chandler MP, Chavez PN, McElfresh TA, Huang H, Harmon CS, Stanley WC. Partial inhibition of fatty acid oxidation increases regional contractile power and efficiency during demand-induced ischemia. Cardiovasc Res. 2003;59:143–51.

    Article  CAS  PubMed  Google Scholar 

  35. Greaves P, Martin J, Michel MC, Mompon P. Cardiac hypertrophy in the dog and rat induced by oxfenicine, an agent which modifies muscle metabolism. Arch Toxicol Suppl. 1984;7:488–93.

    Article  CAS  PubMed  Google Scholar 

  36. Bachmann E, Weber E. Biochemical mechanisms of oxfenicine cardiotoxicity. Pharmacology. 1988;36:238–48.

    Article  CAS  PubMed  Google Scholar 

  37. Dyck JR, Cheng JF, Stanley WC, Barr R, Chandler MP, Brown S, Wallace D, Arrhenius T, Harmon C, Yang G, Nadzan AM, Lopaschuk GD. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res. 2004;94:e78–84.

    Article  CAS  PubMed  Google Scholar 

  38. McClellan KJ, Plosker GL. Trimetazidine. A review of its use in stable angina pectoris and other coronary conditions. Drugs. 1999;58:143–57.

    Article  CAS  PubMed  Google Scholar 

  39. Bucci M, Borra R, Nagren K, Parkka JP, Del Ry S, Maggio R, Tuunanen H, Viljanen T, Cabiati M, Rigazio S, Taittonen M, Pagotto U, Parkkola R, Opie LH, Nuutila P, Knuuti J, Iozzo P. Trimetazidine reduces endogenous free fatty acid oxidation and improves myocardial efficiency in obese humans. Cardiovasc Ther. 2012;30:333–41.

    Article  CAS  PubMed  Google Scholar 

  40. Vaillant F, Tsibiribi P, Bricca G, Bui-Xuan B, Bescond-Jacquet A, Tabib A, Descotes J, Timour Q. Trimetazidine protective effect against ischemia-induced susceptibility to ventricular fibrillation in pigs. Cardiovasc Drugs Ther. 2008;22:29–36.

    Article  CAS  PubMed  Google Scholar 

  41. Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme a thiolase. Circ Res. 2000;86:580–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lopaschuk GD. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated? Coron Artery Dis. 2001;12(Suppl 1):S8–11.

    PubMed  Google Scholar 

  43. Blardi P, de Lalla A, Volpi L, Auteri A, Di Perri T. Increase of adenosine plasma levels after oral trimetazidine: a pharmacological preconditioning? Pharmacol Res. 2002;45:69–72.

    Article  CAS  PubMed  Google Scholar 

  44. Polonski L, Dec I, Wojnar R, Wilczek K. Trimetazidine limits the effects of myocardial ischaemia during percutaneous coronary angioplasty. Curr Med Res Opin. 2002;18:389–96.

    Article  CAS  PubMed  Google Scholar 

  45. Rebrova TY, Lasukova TV, Afanas'ev SA, Perchatkin VA, Maksimov IV, Markov VA. Cardioprotective effect of trimetazidine during thrombolytic therapy in patients with acute myocardial infarction. Bull Exp Biol Med. 2002;134:559–61.

    Article  CAS  PubMed  Google Scholar 

  46. Levy S. Value of the combination of trimetazidine (Vastarel 20 mg) with diltiazem (Tildiem 60 mg) in stable effort angina. A double-blind versus placebo multicenter study. Ann Cardiol Angeiol (Paris). 1995;44:203–12.

    CAS  Google Scholar 

  47. Brochier M, Demange J, Ducloux G, Monpere C, Warin JF. [Value of the combination of trimetazidine and a calcium inhibitor in the treatment of chronic coronary insufficiency. Double-blind controlled study versus placebo]. Ann Cardiol Angeiol (Paris). 1986;35:49–56.

    CAS  Google Scholar 

  48. Deroux A, Brochier M, Demange J, Ducloux G, Monpere C. Warin JF: [therapeutic value of a combination of trimetazidine with a calcium inhibitor in the treatment of chronic coronary insufficiency]. Presse Med. 1986;15:1783–7.

    CAS  PubMed  Google Scholar 

  49. Gallet M. Clinical effectiveness of trimetazidine in stable effort angina. A double-blind versus placebo controlled study. Presse Med. 1986;15:1779–82.

    CAS  PubMed  Google Scholar 

  50. Manchanda SC, Krishnaswami S. Combination treatment with trimetazidine and diltiazem in stable angina pectoris. Heart. 1997;78:353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu C, Dabrowski P, Fragasso G, Chierchia SL. Effects of trimetazidine on ischemic left ventricular dysfunction in patients with coronary artery disease. Am J Cardiol. 1998;82:898–901.

    Article  CAS  PubMed  Google Scholar 

  52. Bricaud H, Brottier L, Barat JL, Combe C, Boussens B, Bonnet J. Cardioprotective effect of trimetazidine in severe ischemic cardiomyopathy. Cardiovasc Drugs Ther. 1990;4(Suppl 4):861–5.

    Article  PubMed  Google Scholar 

  53. Szwed H, Hradec J, Preda I. Anti-ischaemic efficacy and tolerability of trimetazidine administered to patients with angina pectoris: results of three studies. Coron Artery Dis. 2001;12(Suppl 1):S25–8.

    PubMed  Google Scholar 

  54. Passeron J. Effectiveness of trimetazidine in stable effort angina due to chronic coronary insufficiency. A double-blind versus placebo study. Presse Med. 1986;15:1775–8.

    CAS  PubMed  Google Scholar 

  55. Hanania G, Haiat R, Olive T, Maalouf B, Michel D, Martelet M, Godard S. [Coronary artery disease observed in general hospitals: ETTIC study. Comparison between trimetazidine and mononitrate isosorbide for patients receiving betablockers]. Ann Cardiol Angeiol (Paris). 2002;51:268–74.

    Article  CAS  Google Scholar 

  56. Szwed H, Sadowski Z, Elikowski W, Koronkiewicz A, Mamcarz A, Orszulak W, Skibinska E, Szymczak K, Swiatek J, Winter M. Combination treatment in stable effort angina using trimetazidine and metoprolol: results of a randomized, double-blind, multicentre study (TRIMPOL II). TRIMetazidine in POLand Eur Heart J. 2001;22:2267–74.

    Article  CAS  PubMed  Google Scholar 

  57. Szwed H. Clinical benefits of trimetazidine in patients with recurrent angina. Coron Artery Dis. 2004;15(Suppl 1):S17–21.

    PubMed  Google Scholar 

  58. Chazov EI, Lepakchin VK, Zharova EA, Fitilev SB, Levin AM, Rumiantzeva EG, Fitileva TB. Trimetazidine in angina combination therapy--the TACT study: trimetazidine versus conventional treatment in patients with stable angina pectoris in a randomized, placebo-controlled, multicenter study. Am J Ther. 2005;12:35–42.

    Article  CAS  PubMed  Google Scholar 

  59. Michaelides A, Spiropoulos K, Dimopoulos K, Athanasiades D, Toutouzas P. Antianginal efficacy of the combination of trimetazidine-propranolol compared with isosorbide dinitrate-propranolol in patients with stable angina. Clinical Drug Investigation. 1997;13:8–14.

    Article  CAS  Google Scholar 

  60. Vitale C, Spoletini I, Malorni W, Perrone-Filardi P, Volterrani M, Rosano GM. Efficacy of trimetazidine on functional capacity in symptomatic patients with stable exertional angina - the VASCO-angina study. Int J Cardiol. 2013;168(2):1078–81.

    Article  PubMed  Google Scholar 

  61. Grabczewska Z, Bialoszynski T, Szymanski P, Sukiennik A, Swiatkiewicz I, Kozinski M, Kochman W, Grzesk G, Kubica J. The effect of trimetazidine added to maximal anti-ischemic therapy in patients with advanced coronary artery disease. Cardiol J. 2008;15:344–50.

    PubMed  Google Scholar 

  62. Marazzi G, Wajngarten M, Vitale C, Patrizi R, Pelliccia F, Gebara O, Pierri H, Ramires JA, Volterrani M, Fini M, Rosano GM. Effect of free fatty acid inhibition on silent and symptomatic myocardial ischemia in diabetic patients with coronary artery disease. Int J Cardiol. 2007;120:79–84.

    Article  PubMed  Google Scholar 

  63. Peng S, Zhao M, Wan J, Fang Q, Fang D, Li K. The efficacy of trimetazidine on stable angina pectoris: a meta-analysis of randomized clinical trials. Int J Cardiol. 2014;177:780–5.

    Article  PubMed  Google Scholar 

  64. Marzilli M. Cardioprotective effects of trimetazidine: a review. Curr Med Res Opin. 2003;19:661–72.

    Article  CAS  PubMed  Google Scholar 

  65. Danchin N, Marzilli M, Parkhomenko A, Ribeiro JP. Efficacy comparison of trimetazidine with therapeutic alternatives in stable angina pectoris: a network meta-analysis. Cardiology. 2011;120:59–72.

    Article  CAS  PubMed  Google Scholar 

  66. Marzilli M. Does trimetazidine prevent myocardial injury after percutaneous coronary intervention? Nat Clin Pract Cardiovasc Med. 2008;5:16–7.

    Article  PubMed  Google Scholar 

  67. Danchin N. Clinical benefits of a metabolic approach with trimetazidine in revascularized patients with angina. Am J Cardiol. 2006;98:8J–13J.

    Article  CAS  PubMed  Google Scholar 

  68. Vasiuk Iu A, Shal'nova SA, Shkol'nik EL, Kulikov KG. [The (PRIMA) Study. Comparison of clinical effect of trimetazidine MR in men and women]. Kardiologiia. 2011;51:11–5.

    CAS  PubMed  Google Scholar 

  69. Rodriguez Padial L, Maicas Bellido C, Velazquez Martin M, Gil Polo B. A prospective study on trimetazidine effectiveness and tolerability in diabetic patients in association to the previous treatment of their coronary disease. DIETRIC study. Rev Clin Esp. 2005;205:57–62.

    Article  CAS  PubMed  Google Scholar 

  70. Ribeiro LW, Ribeiro JP, Stein R, Leitao C, Polanczyk CA. Trimetazidine added to combined hemodynamic antianginal therapy in patients with type 2 diabetes: a randomized crossover trial. Am Heart J. 2007;154(78):e71–7.

    Google Scholar 

  71. Sellier P, Audouin P, Payen B, Corona P, Duong TC, Ourbak P. Acute effects of trimetazidine evaluated by exercise testing. Eur J Clin Pharmacol. 1987;33:205–7.

    Article  CAS  PubMed  Google Scholar 

  72. Fragasso G, Palloshi A, Puccetti P, Silipigni C, Rossodivita A, Pala M, Calori G, Alfieri O, Margonato A. A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure. J Am Coll Cardiol. 2006;48:992–8.

    Article  CAS  PubMed  Google Scholar 

  73. Zhao P, Zhang J, Yin XG, Maharaj P, Narraindoo S, Cui LQ, Tang YS. The effect of trimetazidine on cardiac function in diabetic patients with idiopathic dilated cardiomyopathy. Life Sci. 2013;92:633–8.

    Article  CAS  PubMed  Google Scholar 

  74. Hu B, Li W, Xu T, Chen T, Guo J. Evaluation of trimetazidine in angina pectoris by echocardiography and radionuclide angiography: a meta-analysis of randomized, controlled trials. Clin Cardiol. 2011;34:395–400.

    Article  PubMed  Google Scholar 

  75. Fragasso G, Piatti Md PM, Monti L, Palloshi A, Setola E, Puccetti P, Calori G, Lopaschuk GD, Margonato A. Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J. 2003;146:E18.

    Article  CAS  PubMed  Google Scholar 

  76. Fragasso G, Rosano G, Baek SH, Sisakian H, Di Napoli P, Alberti L, Calori G, Kang SM, Sahakyan L, Sanosyan A, Vitale C, Marazzi G, Margonato A, Belardinelli R. Effect of partial fatty acid oxidation inhibition with trimetazidine on mortality and morbidity in heart failure: results from an international multicentre retrospective cohort study. Int J Cardiol. 2013;163:320–5.

    Article  PubMed  Google Scholar 

  77. Rosano GM, Vitale C, Sposato B, Mercuro G, Fini M. Trimetazidine improves left ventricular function in diabetic patients with coronary artery disease: a double-blind placebo-controlled study. Cardiovasc Diabetol. 2003;2:16.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Monti LD, Setola E, Fragasso G, Camisasca RP, Lucotti P, Galluccio E, Origgi A, Margonato A, Piatti P. Metabolic and endothelial effects of trimetazidine on forearm skeletal muscle in patients with type 2 diabetes and ischemic cardiomyopathy. Am J Physiol Endocrinol Metab. 2006;290:E54–9.

    Article  CAS  PubMed  Google Scholar 

  79. Gunes Y, Guntekin U, Tuncer M, Sahin M. Improved left and right ventricular functions with trimetazidine in patients with heart failure: a tissue Doppler study. Heart Vessel. 2009;24:277–82.

    Article  Google Scholar 

  80. Marazzi G, Gebara O, Vitale C, Caminiti G, Wajngarten M, Volterrani M, Ramires JA, Rosano G, Fini M. Effect of trimetazidine on quality of life in elderly patients with ischemic dilated cardiomyopathy. Adv Ther. 2009;26:455–61.

    Article  CAS  PubMed  Google Scholar 

  81. Belardinelli R, Lacalaprice F, Faccenda E, Volpe L. Trimetazidine potentiates the effects of exercise training in patients with ischemic cardiomyopathy referred for cardiac rehabilitation. Eur J Cardiovasc Prev Rehabil. 2008;15:533–40.

    Article  PubMed  Google Scholar 

  82. Gao D, Ning N, Niu X, Hao G, Meng Z. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart. 2011;97:278–86.

    Article  CAS  PubMed  Google Scholar 

  83. El-Kady T, El-Sabban K, Gabaly M, Sabry A, Abdel-Hady S. Effects of trimetazidine on myocardial perfusion and the contractile response of chronically dysfunctional myocardium in ischemic cardiomyopathy: a 24-month study. Am J Cardiovasc Drugs. 2005;5:271–8.

    Article  CAS  PubMed  Google Scholar 

  84. Tritto I, Wang P, Kuppusamy P, Giraldez R, Zweier JL, Ambrosio G. The anti-anginal drug trimetazidine reduces neutrophil-mediated cardiac reperfusion injury. J Cardiovasc Pharmacol. 2005;46:89–98.

    Article  CAS  PubMed  Google Scholar 

  85. Williams FM, Tanda K, Kus M, Williams TJ. Trimetazidine inhibits neutrophil accumulation after myocardial ischaemia and reperfusion in rabbits. J Cardiovasc Pharmacol. 1993;22:828–33.

    Article  CAS  PubMed  Google Scholar 

  86. Khan M, Meduru S, Mostafa M, Khan S, Hideg K, Kuppusamy P. Trimetazidine, administered at the onset of reperfusion, ameliorates myocardial dysfunction and injury by activation of p38 mitogen-activated protein kinase and Akt signaling. J Pharmacol Exp Ther. 2010;333:421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bonello L, Sbragia P, Amabile N, Com O, Pierre SV, Levy S, Paganelli F. Protective effect of an acute oral loading dose of trimetazidine on myocardial injury following percutaneous coronary intervention. Heart. 2007;93:703–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fabiani JN, Ponzio O, Emerit I, Massonet-Castel S, Paris M, Chevalier P, Jebara V, Carpentier A. Cardioprotective effect of trimetazidine during coronary artery graft surgery. J Cardiovasc Surg. 1992;33:486–91.

    CAS  Google Scholar 

  89. Chaitman BR, Pepine CJ, Parker JO, Skopal J, Chumakova G, Kuch J, Wang W, Skettino SL, Wolff AA. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA. 2004;291:309–16.

    Article  CAS  PubMed  Google Scholar 

  90. Rousseau MF, Pouleur H, Cocco G, Wolff AA. Comparative efficacy of ranolazine versus atenolol for chronic angina pectoris. Am J Cardiol. 2005;95:311–6.

    Article  CAS  PubMed  Google Scholar 

  91. Chaitman BR, Skettino SL, Parker JO, Hanley P, Meluzin J, Kuch J, Pepine CJ, Wang W, Nelson JJ, Hebert DA, Wolff AA. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol. 2004;43:1375–82.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang XQ, Yamada S, Barry WH. Ranolazine inhibits an oxidative stress-induced increase in myocyte sodium and calcium loading during simulated-demand ischemia. J Cardiovasc Pharmacol. 2008;51:443–9.

    Article  CAS  PubMed  Google Scholar 

  93. Maier LS. A novel mechanism for the treatment of angina, arrhythmias, and diastolic dysfunction: inhibition of late I(Na) using ranolazine. J Cardiovasc Pharmacol. 2009;54:279–86.

    Article  CAS  PubMed  Google Scholar 

  94. Jerling M. Clinical Pharmacokinetics of ranolazine Clin Pharmacokinetic. 2006;45:469–91.

  95. Kaliebe JW, Murdock DK. Suppression of non-sustained ventricular tachycardia with ranolazine: a case report. Wmj. 2009;108:373–5.

    PubMed  Google Scholar 

  96. Belardinelli L, Liu G, Smith-Maxwell C, Wang WQ, El-Bizri N, Hirakawa R, Karpinski S, Li CH, Hu L, Li XJ, Crumb W, Wu L, Koltun D, Zablocki J, Yao L, Dhalla AK, Rajamani S, Shryock JC. A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias. J Pharmacol Exp Ther. 2013;344:23–32.

    Article  CAS  PubMed  Google Scholar 

  97. Belardinelli L, Shryock JC, Fraser H. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart. 2006;92(Suppl 4):iv6–iv14.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Antoons G, Oros A, Beekman JD, Engelen MA, Houtman MJ, Belardinelli L, Stengl M, Vos MA. Late na(+) current inhibition by ranolazine reduces torsades de pointes in the chronic atrioventricular block dog model. J Am Coll Cardiol. 2010;55:801–9.

    Article  CAS  PubMed  Google Scholar 

  99. Aidonidis I, Doulas K, Hatziefthimiou A, Tagarakis G, Simopoulos V, Rizos I, Tsilimingas N, Molyvdas PA. Ranolazine-induced postrepolarization refractoriness suppresses induction of atrial flutter and fibrillation in anesthetized rabbits. J Cardiovasc Pharmacol Ther. 2013;18:94–101.

    Article  CAS  PubMed  Google Scholar 

  100. Coppini R, Ferrantini C, Yao L, Fan P, Del Lungo M, Stillitano F, Sartiani L, Tosi B, Suffredini S, Tesi C, Yacoub M, Olivotto I, Belardinelli L, Poggesi C, Cerbai E, Mugelli A. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 2013;127:575–84.

    Article  CAS  PubMed  Google Scholar 

  101. Burashnikov A, Antzelevitch C. Role of late sodium channel current block in the management of atrial fibrillation. Cardiovasc Drugs Ther. 2013;27:79–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pelliccia F, Pasceri V, Marazzi G, Rosano G, Greco C, Gaudio C. A pilot randomized study of ranolazine for reduction of myocardial damage during elective percutaneous coronary intervention. Am Heart J. 2012;163:1019–23.

    Article  CAS  PubMed  Google Scholar 

  103. Mehta PK, Goykhman P, Thomson LE, Shufelt C, Wei J, Yang Y, Gill E, Minissian M, Shaw LJ, Slomka PJ, Slivka M, Berman DS, Bairey Merz CN. Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. JACC Cardiovasc Imaging. 2011;4:514–22.

    Article  PubMed  Google Scholar 

  104. Stone PH, Chaitman BR, Stocke K, Sano J, DeVault A, Koch GG. The anti-ischemic mechanism of action of ranolazine in stable ischemic heart disease. J Am Coll Cardiol. 2010;56:934–42.

    Article  CAS  PubMed  Google Scholar 

  105. Chandler MP, Stanley WC, Morita H, Suzuki G, Roth BA, Blackburn B, Wolff A, Sabbah HN. Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res. 2002;91:278–80.

    Article  CAS  PubMed  Google Scholar 

  106. Rastogi S, Sharov VG, Mishra S, Gupta RC, Blackburn B, Belardinelli L, Stanley WC, Sabbah HN. Ranolazine combined with enalapril or metoprolol prevents progressive LV dysfunction and remodeling in dogs with moderate heart failure. Am J Physiol Heart Circ Physiol. 2008;295:H2149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Koren MJ, Crager MR, Sweeney M. Long-term safety of a novel antianginal agent in patients with severe chronic stable angina: the ranolazine open label experience (ROLE). J Am Coll Cardiol. 2007;49:1027–34.

    Article  CAS  PubMed  Google Scholar 

  108. Rich MW, Crager M, McKay CR. Safety and efficacy of extended-release ranolazine in patients aged 70 years or older with chronic stable angina pectoris. Am J Geriatr Cardiol. 2007;16:216–21.

    Article  PubMed  Google Scholar 

  109. Cocco G, Rousseau MF, Bouvy T, Cheron P, Williams G, Detry JM, Pouleur H. Effects of a new metabolic modulator, ranolazine, on exercise tolerance in angina pectoris patients treated with beta-blocker or diltiazem. J Cardiovasc Pharmacol. 1992;20:131–8.

    CAS  PubMed  Google Scholar 

  110. Venkataraman R, Belardinelli L, Blackburn B, Heo J, Iskandrian AE. A study of the effects of ranolazine using automated quantitative analysis of serial myocardial perfusion images. JACC Cardiovasc Imaging. 2009;2:1301–9.

    Article  PubMed  Google Scholar 

  111. Timmis AD, Chaitman BR, Crager M. Effects of ranolazine on exercise tolerance and HbA1c in patients with chronic angina and diabetes. Eur Heart J. 2006;27:42–8.

    Article  CAS  PubMed  Google Scholar 

  112. Arnold SV, McGuire DK, Spertus JA, Li Y, Yue P, Ben-Yehuda O, Belardinelli L, Jones PG, Olmsted A, Chaitman BR, Kosiborod M. Effectiveness of ranolazine in patients with type 2 diabetes mellitus and chronic stable angina according to baseline hemoglobin A1c. Am Heart J. 2014;168:457–65 .e452

    Article  CAS  PubMed  Google Scholar 

  113. Kosiborod M, Arnold SV, Spertus JA, McGuire DK, Li Y, Yue P, Ben-Yehuda O, Katz A, Jones PG, Olmsted A, Belardinelli L, Chaitman BR. Evaluation of ranolazine in patients with type 2 diabetes mellitus and chronic stable angina: results from the TERISA randomized clinical trial (type 2 diabetes evaluation of ranolazine in subjects with chronic stable angina). J Am Coll Cardiol. 2013;61:2038–45.

    Article  CAS  PubMed  Google Scholar 

  114. Villano A, Di Franco A, Nerla R, Sestito A, Tarzia P, Lamendola P, Di Monaco A, Sarullo FM, Lanza GA, Crea F. Effects of ivabradine and ranolazine in patients with microvascular angina pectoris. Am J Cardiol. 2013;112:8–13.

    Article  CAS  PubMed  Google Scholar 

  115. Tagliamonte E, Rigo F, Cirillo T, Astarita C, Quaranta G, Marinelli U, Caruso A, Romano C, Capuano N. Effects of ranolazine on noninvasive coronary flow Reserve in Patients with myocardial ischemia but without obstructive coronary artery disease. Echocardiography. 2015;32:516–21.

    Article  PubMed  Google Scholar 

  116. Morrow DA, Scirica BM, Karwatowska-Prokopczuk E, Murphy SA, Budaj A, Varshavsky S, Wolff AA, Skene A, McCabe CH, Braunwald E. Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: the MERLIN-TIMI 36 randomized trial. JAMA. 2007;297:1775–83.

    Article  CAS  PubMed  Google Scholar 

  117. Melloni C, Newby LK. Metabolic efficiency with ranolazine for less ischemia in non-ST elevation acute coronary syndromes (MERLIN TIMI-36) study. Expert Rev Cardiovasc Ther. 2008;6:9–16.

    Article  CAS  PubMed  Google Scholar 

  118. Mega JL, Hochman JS, Scirica BM, Murphy SA, Sloan S, McCabe CH, Merlini P, Morrow DA. Clinical features and outcomes of women with unstable ischemic heart disease: observations from metabolic efficiency with ranolazine for less ischemia in non-ST-elevation acute coronary syndromes-thrombolysis in myocardial infarction 36 (MERLIN-TIMI 36). Circulation. 2010;121:1809–17.

    Article  PubMed  Google Scholar 

  119. Karwatowska-Prokopczuk E, Wang W, Cheng ML, Zeng D, Schwartz PJ, Belardinelli L. The risk of sudden cardiac death in patients with non-ST elevation acute coronary syndrome and prolonged QTc interval: effect of ranolazine. Europace. 2013;15:429–36.

    Article  PubMed  Google Scholar 

  120. Morrow DA, Scirica BM, Sabatine MS, de Lemos JA, Murphy SA, Jarolim P, Theroux P, Bode C, Braunwald E. B-type natriuretic peptide and the effect of ranolazine in patients with non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 (metabolic efficiency with ranolazine for less ischemia in non-ST elevation acute coronary-thrombolysis in myocardial infarction 36) trial. J Am Coll Cardiol. 2010;55:1189–96.

    Article  CAS  PubMed  Google Scholar 

  121. Chisholm JW, Goldfine AB, Dhalla AK, Braunwald E, Morrow DA, Karwatowska-Prokopczuk E, Belardinelli L. Effect of ranolazine on A1C and glucose levels in hyperglycemic patients with non-ST elevation acute coronary syndrome. Diabetes Care. 2010;33:1163–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Antzelevitch C, Burashnikov A, Sicouri S, Belardinelli L. Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm. 2011;8:1281–90.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bunch TJ, Mahapatra S, Murdock D, Molden J, Weiss JP, May HT, Bair TL, Mader KM, Crandall BG, Day JD, Osborn JS, Muhlestein JB, Lappe DL, Anderson JL. Ranolazine reduces ventricular tachycardia burden and ICD shocks in patients with drug-refractory ICD shocks. Pacing Clin Electrophysiol. 2011;34:1600–6.

    Article  PubMed  Google Scholar 

  124. Frommeyer G, Rajamani S, Grundmann F, Stypmann J, Osada N, Breithardt G, Belardinelli L, Eckardt L, Milberg P. New insights into the beneficial electrophysiologic profile of ranolazine in heart failure: prevention of ventricular fibrillation with increased postrepolarization refractoriness and without drug-induced proarrhythmia. J Card Fail. 2012;18:939–49.

    Article  CAS  PubMed  Google Scholar 

  125. Sabbah HN, Chandler MP, Mishima T, Suzuki G, Chaudhry P, Nass O, Biesiadecki BJ, Blackburn B, Wolff A, Stanley WC. Ranolazine, a partial fatty acid oxidation (pFOX) inhibitor, improves left ventricular function in dogs with chronic heart failure. J Card Fail. 2002;8:416–22.

    Article  CAS  PubMed  Google Scholar 

  126. Aaker A, McCormack JG, Hirai T, Musch TI. Effects of ranolazine on the exercise capacity of rats with chronic heart failure induced by myocardial infarction. J Cardiovasc Pharmacol. 1996;28:353–62.

    Article  CAS  PubMed  Google Scholar 

  127. Sossalla S, Wagner S, Rasenack EC, Ruff H, Weber SL, Schondube FA, Tirilomis T, Tenderich G, Hasenfuss G, Belardinelli L, Maier LS. Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts--role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol. 2008;45:32–43.

    Article  CAS  PubMed  Google Scholar 

  128. Hale SL, Shryock JC, Belardinelli L, Sweeney M, Kloner RA. Late sodium current inhibition as a new cardioprotective approach. J Mol Cell Cardiol. 2008;44:954–67.

    Article  CAS  PubMed  Google Scholar 

  129. Wu Y, Song Y, Belardinelli L, Shryock JC. The late Na + current (INa) inhibitor ranolazine attenuates effects of palmitoyl-L-carnitine to increase late INa and cause ventricular diastolic dysfunction. J Pharmacol Exp Ther. 2009;330:550–7.

    Article  CAS  PubMed  Google Scholar 

  130. Fragasso G, Spoladore R, Cuko A, Palloshi A. Modulation of fatty acids oxidation in heart failure by selective pharmacological inhibition of 3-ketoacyl coenzyme-a thiolase. Curr Clin Pharmacol. 2007;2:190–6.

    Article  CAS  PubMed  Google Scholar 

  131. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T, Di Mario C, Ferreira JR, Gersh BJ, Gitt AK, Hulot JS, Marx N, Opie LH, Pfisterer M, Prescott E, Ruschitzka F, Sabate M, Senior R, Taggart DP, van der Wall EE, Vrints CJ, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Knuuti J, Valgimigli M, Bueno H, Claeys MJ, Donner-Banzhoff N, Erol C, Frank H, Funck-Brentano C, Gaemperli O, Gonzalez-Juanatey JR, Hamilos M, Hasdai D, Husted S, James SK, Kervinen K, Kolh P, Kristensen SD, Lancellotti P, Maggioni AP, Piepoli MF, Pries AR, Romeo F, Ryden L, Simoons ML, Sirnes PA, Steg PG, Timmis A, Wijns W, Windecker S, Yildirir A, Zamorano JL. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.

    Article  PubMed  Google Scholar 

  132. Ohman EM, Alexander KP. The challenges with chronic angina. N Engl J Med. 2014;371:1152–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Marzilli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guarini, G., Huqi, A., Morrone, D. et al. Pharmacological Agents Targeting Myocardial Metabolism for the Management of Chronic Stable Angina : an Update. Cardiovasc Drugs Ther 30, 379–391 (2016). https://doi.org/10.1007/s10557-016-6677-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-016-6677-y

Keywords

Navigation