Skip to main content

Advertisement

Log in

High-Throughput RNAi Screening Identifies a Role for the Osteopontin Pathway in Proliferation and Migration of Human Aortic Smooth Muscle Cells

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Understanding of the mechanisms of vascular smooth muscle cells (VSMCs) phenotypic regulation is critically important to identify novel candidates for future therapeutic intervention. While HTS approaches have recently been used to identify novel regulators in many cell lines, such as cancer cells and hematopoietic stem cells, no studies have so far systematically investigated the effect of gene inactivation on VSMCs with respect to cell survival and growth response.

Methods and Results

257 out of 2000 genes tested resulted in an inhibition of cell proliferation in HaoSMCs. After pathway analysis, 38 significant genes were selected for further study. 23 genes were confirmed to inhibit proliferation, and 13 genes found to induce apoptosis in the synthetic phenotype. 11 genes led to an aberrant nuclear phenotype indicating a central role in cell mitosis. 4 genes affected the cell migration in synthetic HaoSMCs. Using computational biological network analysis, 11 genes were identified to have an indirect or direct interaction with the Osteopontin pathway. For 10 of those genes, levels of proteins downstream of the Osteopontin pathway were found to be down-regulated, using RNAi methodology.

Conclusions

A phenotypic high-throughput siRNA screen could be applied to identify genes relevant for the cell biology of HaoSMCs. Novel genes were identified which play a role in proliferation, apoptosis, mitosis and migration of HaoSMCs. These may represent potential drug candidates in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Piotin M, Spelle L, Martin JB, Weill A, Rancurel G, Ross IB, et al. Percutaneous transluminal angioplasty and stenting of the proximal vertebral artery for symptomatic stenosis. AJNR Am J Neuroradiol. 2000;21:727–31.

    CAS  PubMed  Google Scholar 

  2. Linni K, Aspalter M, Ugurluoglu A, Holzenbein T. Proximal common carotid artery lesions: endovascular and open repair. Eur J Vasc Endovasc Surg. 2011;41:728–34.

    Article  CAS  PubMed  Google Scholar 

  3. Wu R, Yao C, Wang S, Xu X, Wang M, Li Z. Percutaneous transluminal angioplasty versus primary stenting in infrapopliteal arterial disease: a meta-analysis of randomized trials. J Vasc Surg. 2014;59:1711–20.

    Article  PubMed  Google Scholar 

  4. Rajagopal V, Rockson SG. Coronary restenosis: a review of mechanisms and management. Am J Med. 2003;115:547–53.

    Article  PubMed  Google Scholar 

  5. Terada T, Tsuura M, Masuo O, Matsumoto H, Yamaga H, Yokote H, et al. Treatment of restenosis after percutaneous transluminal angioplasty for internal carotid artery stenosis. Neuroradiology. 2000;42:296–301.

    Article  CAS  PubMed  Google Scholar 

  6. Schillinger M, Minar E. Restenosis after percutaneous angioplasty: the role of vascular inflammation. Vasc Health Risk Manag. 2005;1:73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Campbell GR, Campbell JH. The phenotypes of smooth muscle expressed in human atheroma. Ann N Y Acad Sci. 1990;598:143–58.

    Article  CAS  PubMed  Google Scholar 

  8. Shi N, Chen SY. Mechanisms simultaneously regulate smooth muscle proliferation and differentiation. J Biol Res. 2014;28:40–6.

    CAS  Google Scholar 

  9. Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones. 2007;39:86–93.

    PubMed  Google Scholar 

  10. Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Hear J. 2007;15:100–8.

    Article  CAS  Google Scholar 

  11. Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. Journal of vascular surgery. 2007; 45 Suppl A:A25–A32.

  12. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801.

    Article  CAS  PubMed  Google Scholar 

  13. Ovcharenko D, Jarvis R, Hunicke-Smith S, Kelnar K, Brown D. High-throughput RNAi screening in vitro: from cell lines to primary cells. RNA. 2005;11:985–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kiefer J, Yin HH, Que QQ, Mousses S. High-throughput siRNA screening as a method of perturbation of biological systems and identification of targeted pathways coupled with compound screening. Methods Mol Biol. 2009;563:275–87.

    Article  CAS  PubMed  Google Scholar 

  15. Sims D, Mendes-Pereira AM, Frankum J, Burgess D, Cerone MA, Lombardelli C, et al. High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing. Genome Biol. 2011;12:R104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, et al. Reverse transfection on cell arrays for high content screening microscopy. Nat Protoc. 2007;2:392–9.

    Article  CAS  PubMed  Google Scholar 

  17. Erfle H, Pashayeva K, Harder N, Zhang L, Rohr K, Schadendorf D, et al. Targeting mitosis-regulating genes in cisplatin-sensitive and -resistant melanoma cells: A live-cell RNAi screen displays differential nucleus-derived phenotypes. Biom J. 2015;10:1467–77.

    CAS  Google Scholar 

  18. Held MA, Langdon CG, Platt JT, Graham-Steed T, Liu Z, Chakraborty A, et al. Genotype-selective combination therapies for melanoma identified by high-throughput drug screening. Cancer Discov. 2013;3:52–67.

    Article  CAS  PubMed  Google Scholar 

  19. Bushway PJ, Mercola M. High-throughput screening for modulators of stem cell differentiation. Methods Enzymol. 2006;414:300–16.

    Article  CAS  PubMed  Google Scholar 

  20. Poliseno L, Cecchettini A, Mariani L, Evangelista M, Ricci F, Giorgi F, et al. Resting smooth muscle cells as a model for studying vascular cell activation. Tissue Cell. 2006;38:111–20.

    Article  CAS  PubMed  Google Scholar 

  21. Han M, Wen JK, Zheng B, Cheng Y, Zhang C. Serum deprivation results in redifferentiation of human umbilical vascular smooth muscle cells. Am J Physiol Cell Physiol. 2006;291:C50–8.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang QJ, Goddard M, Shanahan C, Shapiro L, Bennett M. Differential gene expression in vascular smooth muscle cells in primary atherosclerosis and in stent stenosis in humans. Arterioscler Thromb Vasc Biol. 2002;22:2030–6.

    Article  CAS  PubMed  Google Scholar 

  23. Cecchettini A, Rocchiccioli S, Boccardi C, Citti L. Vascular smooth-muscle-cell activation: proteomics point of view. Int Rev Cell Mol Biol. 2011;288:43–99.

    Article  CAS  PubMed  Google Scholar 

  24. Kaplan-Albuquerque N, Bogaert YE, Van Putten V, Weiser-Evans MC, Nemenoff RA. Patterns of gene expression differentially regulated by platelet-derived growth factor and hypertrophic stimuli in vascular smooth muscle cells: markers for phenotypic modulation and response to injury. J Biol Chem. 2005;280:19966–76.

    Article  CAS  PubMed  Google Scholar 

  25. Erfle H, Neumann B, Rogers P, Bulkescher J, Ellenberg J, Pepperkok R. Work flow for multiplexing siRNA assays by solid-phase reverse transfection in multiwell plates. J Biomol Screen. 2008;13:575–80.

    Article  CAS  PubMed  Google Scholar 

  26. Harder N, Mora-Bermudez F, Godinez WJ, Wunsche A, Eils R, Ellenberg J, et al. Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time. Genome Res. 2009;19:2113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harder N, Batra R, Diessl N, Gogolin S, Eils R, Westermann F, et al. Large-scale tracking and classification for automatic analysis of cell migration and proliferation, and experimental optimization of high-throughput screens of neuroblastoma cells. Cytometry Part A: the journal of the International Society for Analytical. Cytology. 2015;87:524–40.

    Google Scholar 

  28. Hao H, Gabbiani G, Bochaton-Piallat ML. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol. 2003;23:1510–20.

    Article  CAS  PubMed  Google Scholar 

  29. Purschke M, Rubio N, Held KD, Redmond RW. Phototoxicity of Hoechst 33342 in time-lapse fluorescence microscopy. Photochem Photobiol Sci. 2010;9:1634–9.

    Article  CAS  PubMed  Google Scholar 

  30. Nakano-Kurimoto R, Ikeda K, Uraoka M, Nakagawa Y, Yutaka K, Koide M, et al. Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiol Heart Circ Physiol. 2009;297:H1673–84.

    Article  CAS  PubMed  Google Scholar 

  31. Vantler M, Caglayan E, Zimmermann WH, Baumer AT, Rosenkranz S. Systematic evaluation of anti-apoptotic growth factor signaling in vascular smooth muscle cells. only phosphatidylinositol 3′-kinase is important. J Biol Chem. 2005;280:14168–76.

    Article  CAS  PubMed  Google Scholar 

  32. Goel SA, Guo LW, Wang B, Guo S, Roenneburg D, Ananiev GE, et al. High-throughput screening identifies idarubicin as a preferential inhibitor of smooth muscle versus endothelial cell proliferation. PLoS ONE. 2014;9:e89349.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Raines EW. The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int J Exp Pathol. 2000;81:173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res. 2012;95:233–40.

    Article  CAS  PubMed  Google Scholar 

  35. Evensen L, Micklem DR, Link W, Lorens JB. A novel imaging-based high-throughput screening approach to anti-angiogenic drug discovery. Cytometry A. 2010;77:41–51.

    PubMed  Google Scholar 

  36. Doring Y, Noels H, Weber C. The use of high-throughput technologies to investigate vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:182–95.

    Article  PubMed  Google Scholar 

  37. Ishigaki T, Imanaka-Yoshida K, Shimojo N, Matsushima S, Taki W, Yoshida T. Tenascin-C enhances crosstalk signaling of integrin alphavbeta3/PDGFR-beta complex by SRC recruitment promoting PDGF-induced proliferation and migration in smooth muscle cells. J Cell Physiol. 2011;226:2617–24.

    Article  CAS  PubMed  Google Scholar 

  38. Beier I, Dusing R, Vetter H, Schmitz U. Epidermal growth factor stimulates Rac1 and p21-activated kinase in vascular smooth muscle cells. Atherosclerosis. 2008;196:92–7.

    Article  CAS  PubMed  Google Scholar 

  39. Lv L, Zhang J, Huang X, Zhao Y, Zhou Z, Zhang H. Lentivirus-mediated RNA interference targeting STAT4 inhibits the proliferation of vascular smooth muscle cells. Arch Med Res. 2008;39:582–9.

    Article  CAS  PubMed  Google Scholar 

  40. Stein JV, Nombela-Arrieta C. Chemokine control of lymphocyte trafficking: a general overview. Immunology. 2005;116:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Halvorsen B, Smedbakken LM, Michelsen AE, Skjelland M, Bjerkeli V, Sagen EL, et al. Activated platelets promote increased monocyte expression of CXCR5 through prostaglandin E2-related mechanisms and enhance the anti-inflammatory effects of CXCL13. Atherosclerosis. 2014;234:352–9.

    Article  CAS  PubMed  Google Scholar 

  42. Smedbakken LM, Halvorsen B, Daissormont I, Ranheim T, Michelsen AE, Skjelland M, et al. Increased levels of the homeostatic chemokine CXCL13 in human atherosclerosis - potential role in plaque stabilization. Atherosclerosis. 2012;224:266–73.

    Article  CAS  PubMed  Google Scholar 

  43. Grabner R, Lotzer K, Dopping S, Hildner M, Radke D, Beer M, et al. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J Exp Med. 2009;206:233–48.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Oudit GY, Penninger JM. Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res. 2009;82:250–60.

    Article  CAS  PubMed  Google Scholar 

  45. Oudit GY, Crackower MA, Eriksson U, Sarao R, Kozieradzki I, Sasaki T, et al. Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. Circulation. 2003;108:2147–52.

    Article  CAS  PubMed  Google Scholar 

  46. Bacqueville D, Deleris P, Mendre C, Pieraggi MT, Chap H, Guillon G, et al. Characterization of a G protein-activated phosphoinositide 3-kinase in vascular smooth muscle cell nuclei. J Biol Chem. 2001;276:22170–6.

    Article  CAS  PubMed  Google Scholar 

  47. Vecchione C, Patrucco E, Marino G, Barberis L, Poulet R, Aretini A, et al. Protection from angiotensin II-mediated vasculotoxic and hypertensive response in mice lacking PI3Kgamma. J Exp Med. 2005;201:1217–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Macrez N, Mironneau C, Carricaburu V, Quignard JF, Babich A, Czupalla C, et al. Phosphoinositide 3-kinase isoforms selectively couple receptors to vascular L-type Ca(2+) channels. Circ Res. 2001;89:692–9.

    Article  CAS  PubMed  Google Scholar 

  49. Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA. Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem. 2000;275:4693–8.

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Song YH, Mohler J, Delafontaine P. ANG II induces apoptosis of human vascular smooth muscle via extrinsic pathway involving inhibition of Akt phosphorylation and increased FasL expression. Am J Physiol Heart Circ Physiol. 2006;290:H2116–23.

    Article  CAS  PubMed  Google Scholar 

  51. Xie CW, Wang WY, Yang F, Wu M, Mei YD. RUVBL2 is a novel repressor of ARF transcription. FEBS Lett. 2012;586:435–41.

    Article  CAS  PubMed  Google Scholar 

  52. Zerrouqi A, Pyrzynska B, Febbraio M, Brat DJ, Van Meir EG. P14ARF inhibits human glioblastoma-induced angiogenesis by upregulating the expression of TIMP3. J Clin Invest. 2012;122:1283–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H, Conrad C, et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature. 2010;464:721–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sumara I, Gimenez-Abian JF, Gerlich D, Hirota T, Kraft C, de la Torre C, et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr Biol. 2004;14:1712–22.

    Article  CAS  PubMed  Google Scholar 

  55. Gruss OJ, Wittmann M, Yokoyama H, Pepperkok R, Kufer T, Sillje H, et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol. 2002;4:871–9.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, et al. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell. 2005;16:3187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Glotzer M. The molecular requirements for cytokinesis. Science. 2005;307:1735–9.

    Article  CAS  PubMed  Google Scholar 

  58. Mazzone A, Parri MS, Giannessi D, Ravani M, Vaghetti M, Altieri P, et al. Osteopontin plasma levels and accelerated atherosclerosis in patients with CAD undergoing PCI: a prospective clinical study. Coron Artery Dis. 2011;22:179–87.

    Article  PubMed  Google Scholar 

  59. Han M, Wen JK, Zheng B, Liu Z, Chen Y. Blockade of integrin beta3-FAK signaling pathway activated by osteopontin inhibits neointimal formation after balloon injury. Cardiovasc Pathol. 2007;16:283–90.

    Article  CAS  PubMed  Google Scholar 

  60. Jones PL, Crack J, Rabinovitch M. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol. 1997;139:279–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lamkin TJ, Chin V, Yen A. All-trans retinoic acid induces p62DOK1 and p56DOK2 expression which enhances induced differentiation and G0 arrest of HL-60 leukemia cells. Am J Hematol. 2006;81:603–15.

    Article  CAS  PubMed  Google Scholar 

  62. Holness W, Santore TA, Brown GP, Fallon JT, Taubman MB, Iyengar R. Expression of Q227L-Galpha(s) inhibits intimal vessel wall hyperplasia after balloon injury. Proc Natl Acad Sci U S A. 2001;98:1288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vichalkovski A, Gresko E, Hess D, Restuccia DF, Hemmings BA. PKB/AKT phosphorylation of the transcription factor Twist-1 at Ser42 inhibits p 53 activity in response to DNA damage. Oncogene. 2010;29:3554–65.

    Article  CAS  PubMed  Google Scholar 

  64. Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP, Yang J. Twist1 induces CCL2 and Recruits macrophages to promote angiogenesis. Cancer Res. 2013;73:662–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rodrigues CO, Nerlick ST, White EL, Cleveland JL, King ML. A Myc-Slug (Snail2)/Twist regulatory circuit directs vascular development. Development. 2008;135:1903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moren A, Raja E, Heldin CH, Moustakas A. Negative regulation of TGFbeta signaling by the kinase LKB1 and the scaffolding protein LIP1. J Biol Chem. 2011;286:341–53.

    Article  CAS  PubMed  Google Scholar 

  67. Hayashi M, Nimura K, Kashiwagi K, Harada T, Takaoka K, Kato H, et al. Comparative roles of Twist-1 and Id1 in transcriptional regulation by BMP signaling. J Cell Sci. 2007;120:1350–7.

    Article  CAS  PubMed  Google Scholar 

  68. Zuo HJ, Lin JY, Liu ZY, Liu WF, Liu T, Yang J, et al. Activation of the ERK signaling pathway is involved in CD151-induced angiogenic effects on the formation of CD151-integrin complexes. Acta Pharmacol Sin. 2010;31:805–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Manuel Gunkel and Dr. Dr. Jürgen Reymann for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Keese.

Additional information

Lei Zhang, Holger Erfle and Michael Keese contributed equally to this work.

Electronic supplementary material

ESM 1

(PDF 9552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Erfle, H., Harder, N. et al. High-Throughput RNAi Screening Identifies a Role for the Osteopontin Pathway in Proliferation and Migration of Human Aortic Smooth Muscle Cells. Cardiovasc Drugs Ther 30, 281–295 (2016). https://doi.org/10.1007/s10557-016-6663-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-016-6663-4

Keywords

Navigation