Cardiovascular Drugs and Therapy

, Volume 29, Issue 6, pp 543–550 | Cite as

Rationale and Design of a Randomized Controlled Trial Evaluating Whole Muscle Exercise Training Effects in Outpatients with Pulmonary Arterial Hypertension (WHOLEi+12)

  • Fabian Sanchis-Gomar
  • Laura González-Saiz
  • Paz Sanz-Ayan
  • Carmen Fiuza-Luces
  • Carlos A. Quezada-Loaiza
  • Angela Flox-Camacho
  • Alfredo Santalla
  • Diego Munguía-Izquierdo
  • Alejandro Santos-Lozano
  • Helios Pareja-Galeano
  • Ignacio Ara
  • Pilar Escribano-Subías
  • Alejandro Lucia


Background and Aims

Physical exercise is an important component in the management of pulmonary artery hypertension (PAH). The aim of this randomized controlled trial (RCT) is to determine the effects of an 8-week intervention combining muscle resistance, aerobic and inspiratory pressure load exercises in PAH outpatients.


The RCT will be conducted from September 2015 to September 2016 following the recommendations of the Consolidated Standards of Reported Trials (CONSORT), with a total sample size of n ≥ 48 (≥24 participants/group). We will determine the effects of the intervention on: (i) skeletal-muscle power and mass (primary end points); and (ii) NT-proBNP, cardiopulmonary exercise testing variables (VO2peak, ventilatory equivalent for CO2 at the anaerobic threshold (VE/VCO2 at the AT), end-tidal pressure of CO2 at the anaerobic threshold (PETCO2 at the AT), 6-min walking distance (6MWD), maximal inspiratory pressure (PImax), health-related quality of life (HRQoL), objectively-assessed spontaneous levels of physical activity, and safety (secondary end points).

Conclusions and Perspectives

This trial will provide insight into biological mechanisms of the disease and indicate the potential benefits of exercise in PAH outpatients, particularly on muscle power.


Resistance exercise Pulmonary disease VO2peak NT-proBNP Cardio-pulmonary exercise testing 



We acknowledge to Powerbreathe Spain, Biocorp Europa, Andoain, Basque Country, Spain for the kind donation of devices for inspiratory muscle training. Research by A.L. is funded by Fondo de Investigaciones Sanitarias (grant #PS12/00194) and Fondos FEDER.

Compliance with Ethical Standards

Conflict of Interest

The authors declare they have no financial competing interests.


  1. 1.
    Waxman AB, Zamanian RT. Pulmonary arterial hypertension: new insights into the optimal role of current and emerging prostacyclin therapies. Am J Cardiol. 2013;111:1A–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004;43:13S–24.CrossRefPubMedGoogle Scholar
  3. 3.
    McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation. 2009;119:2250–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Humbert M, Sitbon O, Yaici A, et al. Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. Eur Respir J. 2010;36:549–55.CrossRefPubMedGoogle Scholar
  5. 5.
    Escribano-Subias P, Blanco I, Lopez-Meseguer M, et al. Survival in pulmonary hypertension in Spain: insights from the Spanish registry. Eur Respir J. 2012;40:596–603.CrossRefPubMedGoogle Scholar
  6. 6.
    British Cardiac Society G, Medical Practice C, approved by the British Thoracic S, the British Society of R. Recommendations on the management of pulmonary hypertension in clinical practice. Heart 2001;86 Suppl 1:I1-13Google Scholar
  7. 7.
    Fox BD, Kassirer M, Weiss I, et al. Ambulatory rehabilitation improves exercise capacity in patients with pulmonary hypertension. J Card Fail. 2011;17:196–200.CrossRefPubMedGoogle Scholar
  8. 8.
    Grunig E, Ehlken N, Ghofrani A, et al. Effect of exercise and respiratory training on clinical progression and survival in patients with severe chronic pulmonary hypertension. Respiration. 2011;81:394–401.CrossRefPubMedGoogle Scholar
  9. 9.
    Grunig E, Lichtblau M, Ehlken N, et al. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur Respir J. 2012;40:84–92.CrossRefPubMedGoogle Scholar
  10. 10.
    Grunig E, Maier F, Ehlken N, et al. Exercise training in pulmonary arterial hypertension associated with connective tissue diseases. Arthritis Res Ther. 2012;14:R148.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Mereles D, Ehlken N, Kreuscher S, et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation. 2006;114:1482–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Dimopoulos S, Tzanis G, Manetos C, et al. Peripheral muscle microcirculatory alterations in patients with pulmonary arterial hypertension: a pilot study. Respir Care. 2013;58:2134–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Tolle J, Waxman A, Systrom D. Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med Sci Sports Exerc. 2008;40:3–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Meyer FJ, Lossnitzer D, Kristen AV, et al. Respiratory muscle dysfunction in idiopathic pulmonary arterial hypertension. Eur Respir J. 2005;25:125–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Bauer R, Dehnert C, Schoene P, et al. Skeletal muscle dysfunction in patients with idiopathic pulmonary arterial hypertension. Respir Med. 2007;101:2366–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Marra AM, Arcopinto M, Bossone E, et al. Pulmonary arterial hypertension-related myopathy: an overview of current data and future perspectives. Nutr Metab Cardiovasc Dis. 2015;25:131–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Nagel C, Prange F, Guth S, et al. Exercise training improves exercise capacity and quality of life in patients with inoperable or residual chronic thromboembolic pulmonary hypertension. PLoS ONE [Electron Resour]. 2012;7:e41603.CrossRefGoogle Scholar
  18. 18.
    Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N Engl J Med. 2004;351:1425–36.CrossRefPubMedGoogle Scholar
  19. 19.
    Humbert M, Nunes H, Sitbon O, et al. Risk factors for pulmonary arterial hypertension. Clin Chest Med. 2001;22:459–75.CrossRefPubMedGoogle Scholar
  20. 20.
    Buys R, Avila A, Cornelissen VA. Exercise training improves physical fitness in patients with pulmonary arterial hypertension: a systematic review and meta-analysis of controlled trials. BMC Pulm Med. 2015;15:40.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Martinez-Quintana E, Miranda-Calderin G, Ugarte-Lopetegui A, Rodriguez-Gonzalez F. Rehabilitation program in adult congenital heart disease patients with pulmonary hypertension. Congenit Heart Dis. 2010;5:44–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Ley S, Fink C, Risse F, et al. Magnetic resonance imaging to assess the effect of exercise training on pulmonary perfusion and blood flow in patients with pulmonary hypertension. Eur Radiol. 2012;23:324–31.CrossRefPubMedGoogle Scholar
  23. 23.
    Chan L, Chin LM, Kennedy M, et al. Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest. 2012;143:333–43.PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ehlken N, Verduyn C, Tiede H, et al. Economic evaluation of exercise training in patients with pulmonary hypertension. Lung. 2014;192:359–66.CrossRefPubMedGoogle Scholar
  25. 25.
    Wensel R, Opitz CF, Anker SD, et al. Assessment of survival in patients with primary pulmonary hypertension: importance of cardiopulmonary exercise testing. Circulation. 2002;106:319–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Oudiz RJ, Midde R, Hovenesyan A, et al. Usefulness of right-to-left shunting and poor exercise gas exchange for predicting prognosis in patients with pulmonary arterial hypertension. Am J Cardiol. 2010;105:1186–91.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Quezada-Loaiza CA, Flox-Camacho A, Santos-Lozano A, et al. Predictive value of NT-proBNP combined with exercise capacity variables in pulmonary artery disease: Insights from a Spanish cohort. Int J Cardiol. 2015;186:32–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2012;10:28–55.CrossRefPubMedGoogle Scholar
  29. 29.
    Robertson RJ, Goss FL, Rutkowski J, et al. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med Sci Sports Exerc. 2003;35:333–41.CrossRefPubMedGoogle Scholar
  30. 30.
    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–81.PubMedGoogle Scholar
  31. 31.
    Ferreira JBPR, Stein C, Casali KR, Arena R, Lago PD. Inspiratory muscle training reduces blood pressure and sympathetic activity in hypertensive patients: a randomized controlled tria. Int J Cardiol. 2013;166:61–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Mello PR, Guerra GM, Borile S, et al. Inspiratory muscle training reduces sympathetic nervous activity and improves inspiratory muscle weakness and quality of life in patients with chronic heart failure: a clinical trial. J Cardiopulm Rehabil Prev. 2012;32:255–61.CrossRefPubMedGoogle Scholar
  33. 33.
    Gonzalez-Badillo JJ, Sanchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31:347–52.CrossRefPubMedGoogle Scholar
  34. 34.
    Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31:123–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Santalla A, Munguia-Izquierdo D, Brea-Alejo L, et al. Feasibility of resistance training in adult McArdle patients: clinical outcomes and muscle strength and mass benefits. Front Aging Neurosci. 2015;6:334.Google Scholar
  36. 36.
    Jones SE, Kon SS, Canavan JL, et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax. 2013;68:1015–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Calbet JA, Moysi JS, Dorado C, Rodriguez LP. Bone mineral content and density in professional tennis players. Calcif Tissue Int. 1998;62:491–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Lucia A, Hoyos J, Perez M, Chicharro JL. Heart rate and performance parameters in elite cyclists: a longitudinal study. Med Sci Sports Exerc. 2000;32:1777–82.CrossRefPubMedGoogle Scholar
  39. 39.
    Guyatt GH, Pugsley SO, Sullivan MJ, et al. Effect of encouragement on walking test performance. Thorax. 1984;39:818–22.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Standardization of spirometry--1987 update. Official statement of American Thoracic Society. Respir Care 1987;32:1039–1060Google Scholar
  41. 41.
    Nici L, Donner C, Wouters E, et al. American thoracic society/European respiratory society statement on pulmonary rehabilitation. Am J Respir Crit Care Med. 2006;173:1390–413.CrossRefPubMedGoogle Scholar
  42. 42.
    Ware Jr JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–83.CrossRefPubMedGoogle Scholar
  43. 43.
    Alonso J, Regidor E, Barrio G, et al. Population reference values of the Spanish version of the health questionnaire SF-36. Med Clin (Barc). 1998;111:410–6.Google Scholar
  44. 44.
    Vilagut G, Valderas JM, Ferrer M, et al. Interpretation of SF-36 and SF-12 questionnaires in Spain: physical and mental components. Med Clin (Barc). 2008;130:726–35.CrossRefGoogle Scholar
  45. 45.
    Ruiz-Casado A, Verdugo AS, Solano MJ, et al. Objectively assessed physical activity levels in Spanish cancer survivors. Oncol Nurs Forum. 2014;41:E12–20.CrossRefPubMedGoogle Scholar
  46. 46.
    Santos-Lozano A, Marin PJ, Torres-Luque G, et al. Technical variability of the GT3X accelerometer. Med Eng Phys. 2012;34:787–90.CrossRefPubMedGoogle Scholar
  47. 47.
    Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–81.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fabian Sanchis-Gomar
    • 1
  • Laura González-Saiz
    • 1
  • Paz Sanz-Ayan
    • 2
  • Carmen Fiuza-Luces
    • 1
  • Carlos A. Quezada-Loaiza
    • 3
  • Angela Flox-Camacho
    • 3
  • Alfredo Santalla
    • 1
    • 4
  • Diego Munguía-Izquierdo
    • 4
  • Alejandro Santos-Lozano
    • 1
    • 5
  • Helios Pareja-Galeano
    • 1
    • 6
  • Ignacio Ara
    • 7
  • Pilar Escribano-Subías
    • 3
  • Alejandro Lucia
    • 1
    • 6
  1. 1.Research Institute Hospital 12 de Octubre (‘i + 12’)MadridSpain
  2. 2.Department of RehabilitationHospital Universitario 12 de Octubre28041 MadridSpain
  3. 3.Cardiology DepartmentHospital Universitario 12 de Octubre28041 MadridSpain
  4. 4.Department of Sports and Computer ScienceSection of Physical Education and Sports, Universidad Pablo de OlavideES-41013 SevilleSpain
  5. 5.Department of Health SciencesEuropean University Miguel de CervantesValladolidSpain
  6. 6.European University28670 Villaviciosa de Odón, MadridSpain
  7. 7.Growth, Exercise, Nutrition and Development (GENUD) Toledo Research GroupUniversidad de Castilla-La Mancha45071 ToledoSpain

Personalised recommendations