Cardiovascular Drugs and Therapy

, Volume 28, Issue 6, pp 549–562 | Cite as

Roles of Obese-Insulin Resistance and Anti-Diabetic Drugs on the Heart with Ischemia-Reperfusion Injury

  • Nattayaporn Apaijai
  • Siriporn C. Chattipakorn
  • Nipon Chattipakorn


The incidence of obesity with insulin resistance is increasing worldwide. This condition is also known as a risk factor of coronary artery disease and associated with increased arrhythmias, impaired left ventricular function, and increased infarct size during cardiac ischemia-reperfusion (I/R) injury. The proposed mechanisms are due to impaired glucose utilization and pro-survival signaling molecules, and increased inflammatory cytokines, which have been demonstrated in the I/R hearts in various models of obese-insulin resistance. However, the cardiac effects of diets in the I/R heart are still unsettled since several studies reported that high-caloric diet consumption might protect the heart from I/R injury. Although several therapeutic strategies such as anti-diabetic drugs, natural compounds as well as treadmill exercise have been proposed to exert cardioprotection in the I/R heart in obese-insulin resistant animals, some interventions including ischemic post-conditioning failed to protect the heart from I/R injury. In this comprehensive review, reports from both genetic deletion and dietary-induced obese-insulin resistant animal models regarding the effects of obese-insulin resistance on metabolic parameters, cardiac function, infarct size, and molecular mechanisms under I/R injury are summarized. Moreover, the effects of anti-diabetic drugs and other pharmacological interventions on these parameters in an obese-insulin resistant model under I/R injury are also comprehensively summarized and discussed.


Obesity Left ventricular function Infarct size Ischemia-reperfusion injury Insulin resistance 



This work was supported by the Thailand Research Fund Royal Golden Jubilee PhD Program (NC and NA), the Thailand Research Fund RTA5580006 (NC), BRG5780016 (SC), and the Chiang Mai University Excellent Center Award (NC).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jequier E. Obesity. Impairment of energy intake or of energy expenditure. Ann Endocrinol (Paris). 1995;56(2):87–92.Google Scholar
  2. 2.
    Pratchayasakul W, Kerdphoo S, Petsophonsakul P, Pongchaidecha A, Chattipakorn N, Chattipakorn SC. Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci. 2011;88(13–14):619–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Beck B. Neuropeptide Y, in normal eating and in genetic and dietary-induced obesity. Philos Trans R Soc Lond B Biol Sci. 2006;361(1471):1159–85.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 2008;57(8):1071–7.PubMedCrossRefGoogle Scholar
  6. 6.
    West DB, York B. Dietary fat, genetic predisposition, and obesity: lessons from animal models. Am J Clin Nutr. 1998;67(3 Suppl):505S–12.PubMedGoogle Scholar
  7. 7.
    Fujita H, Kang M, Eren M, Gleaves LA, Vaughan DE, Kume T. Foxc2 is a common mediator of insulin and transforming growth factor beta signaling to regulate plasminogen activator inhibitor type I gene expression. Circ Res. 2006;98(5):626–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev. 2007;12(3–4):217–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Carillon J, Romain C, Bardy G, Fouret G, Feillet-Coudray C, Gaillet S, et al. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: improvement by dietary supplementation with a melon superoxide dismutase. Free Radic Biol Med. 2013;65C:254–61.CrossRefGoogle Scholar
  10. 10.
    Liu J, Lloyd SG. High-fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function after ischemia and reperfusion in obese rats. Nutr Res. 2013;33(4):311–21.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Miura T, Tanno M. Mitochondria and GSK-3beta in cardioprotection against ischemia/reperfusion injury. Cardiovasc Drugs Ther. 2010;24(3):255–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Miura T, Tanno M. The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis. Cardiovasc Res. 2012;94(2):181–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Ghaboura N, Tamareille S, Ducluzeau PH, Grimaud L, Loufrani L, Croue A, et al. Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling. Basic Res Cardiol. 2011;106(1):147–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Honda T, Kaikita K, Tsujita K, Hayasaki T, Matsukawa M, Fuchigami S, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia-reperfusion injury in mice with metabolic disorders. J Mol Cell Cardiol. 2008;44(5):915–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Huisamen B, Genis A, Marais E, Lochner A. Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. 2011;25(1):13–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Yue TL, Nerurkar SS, Bao W, Jucker BM, Sarov-Blat L, Steplewski K, et al. In vivo activation of peroxisome proliferator-activated receptor-delta protects the heart from ischemia/reperfusion injury in Zucker fatty rats. J Pharmacol Exp Ther. 2008;325(2):466–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Cardenas G, Torres JC, Zamora J, Banos G. Isolated heart function during ischemia and reperfusion in sucrose- fed rats: effect of insulin infusion. Cardiovasc Pathol. 2005;14(5):256–64.PubMedCrossRefGoogle Scholar
  18. 18.
    Gundewar S, Calvert JW, Elrod JW, Lefer DJ. Cytoprotective effects of N, N, N-trimethylsphingosine during ischemia- reperfusion injury are lost in the setting of obesity and diabetes. Am J Physiol Heart Circ Physiol. 2007;293(4):H2462–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Huisamen B, Perel SJ, Friedrich SO, Salie R, Strijdom H, Lochner A. ANG II type I receptor antagonism improved nitric oxide production and enhanced eNOS and PKB/Akt expression in hearts from a rat model of insulin resistance. Mol Cell Biochem. 2011;349(1–2):21–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Lekli I, Szabo G, Juhasz B, Das S, Das M, Varga E, et al. Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin. Am J Physiol Heart Circ Physiol. 2008;294(2):H859–66.PubMedCrossRefGoogle Scholar
  21. 21.
    Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A. Chronic melatonin consumption prevents obesity-related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet-induced obesity. J Pineal Res. 2011;50(2):171–82.PubMedGoogle Scholar
  22. 22.
    Ooie T, Kajimoto M, Takahashi N, Shinohara T, Taniguchi Y, Kouno H, et al. Effects of insulin resistance on geranylgeranylacetone-induced expression of heat shock protein 72 and cardioprotection in high-fat diet rats. Life Sci. 2005;77(8):869–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B. Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol. 2008;295(4):H1580–6.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Donner D, Headrick JP, Peart JN, du Toit EF. Obesity improves myocardial ischaemic tolerance and RISK signalling in insulin-insensitive rats. Dis Model Mech. 2013;6(2):457–66.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    du Toit EF, Nabben M, Lochner A. A potential role for angiotensin II in obesity induced cardiac hypertrophy and ischaemic/reperfusion injury. Basic Res Cardiol. 2005;100(4):346–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Huang JV, Lu L, Ye S, Bergman BC, Sparagna GC, Sarraf M, et al. Impaired contractile recovery after low-flow myocardial ischemia in a porcine model of metabolic syndrome. Am J Physiol Heart Circ Physiol. 2013;304(6):H861–73.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Huhn R, Heinen A, Hollmann MW, Schlack W, Preckel B, Weber NC. Cyclosporine a administered during reperfusion fails to restore cardioprotection in prediabetic Zucker obese rats in vivo. Nutr Metab Cardiovasc Dis. 2010;20(10):706–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Jordan JE, Simandle SA, Tulbert CD, Busija DW, Miller AW. Fructose-fed rats are protected against ischemia/reperfusion injury. J Pharmacol Exp Ther. 2003;307(3):1007–11.PubMedCrossRefGoogle Scholar
  29. 29.
    Lacerda L, Opie LH, Lecour S. Influence of tumour necrosis factor alpha on the outcome of ischaemic postconditioning in the presence of obesity and diabetes. Exp Diabetes Res. 2012;2012:502654.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lacerda L, Somers S, Opie LH, Lecour S. Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res. 2009;84(2):201–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Pons S, Martin V, Portal L, Zini R, Morin D, Berdeaux A, et al. Regular treadmill exercise restores cardioprotective signaling pathways in obese mice independently from improvement in associated co-morbidities. J Mol Cell Cardiol. 2013;54:82–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Sidell RJ, Cole MA, Draper NJ, Desrois M, Buckingham RE, Clarke K. Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the Zucker fatty rat heart. Diabetes. 2002;51(4):1110–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Song T, Lv LY, Xu J, Tian ZY, Cui WY, Wang QS, et al. Diet-induced obesity suppresses sevoflurane preconditioning against myocardial ischemia-reperfusion injury: role of AMP-activated protein kinase pathway. Exp Biol Med (Maywood). 2011;236(12):1427–36.CrossRefGoogle Scholar
  34. 34.
    Thakker GD, Frangogiannis NG, Zymek PT, Sharma S, Raya JL, Barger PM, et al. Increased myocardial susceptibility to repetitive ischemia with high-fat diet-induced obesity. Obesity (Silver Spring). 2008;16(12):2593–600.CrossRefGoogle Scholar
  35. 35.
    Wensley I, Salaveria K, Bulmer AC, Donner DG, Du Toit EF. Myocardial structure, function, and ischaemic tolerance in a rodent model of obesity with insulin resistance. Exp Physiol. 2013;98(11):1552–64.PubMedCrossRefGoogle Scholar
  36. 36.
    Lew EA, Garfinkel L. Variations in mortality by weight among 750,000 men and women. J Chronic Dis. 1979;32(8):563–76.PubMedCrossRefGoogle Scholar
  37. 37.
    Eckel RH. Obesity and heart disease: a statement for healthcare professionals from the nutrition committee, American heart association. Circ. 1997;96(9):3248–50.CrossRefGoogle Scholar
  38. 38.
    Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(1):92–100.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793–801.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11(2):183–90.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    De Fea K, Roth RA. Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem. 1997;272(50):31400–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie. 2005;87(1):99–109.PubMedCrossRefGoogle Scholar
  45. 45.
    Stanley WC, Lopaschuk GD, Hall JL, McCormack JG. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res. 1997;33(2):243–57.PubMedCrossRefGoogle Scholar
  46. 46.
    van den Brom CE, Bulte CS, Loer SA, Bouwman RA, Boer C. Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism. Cardiovasc Diabetol. 2013;12:42.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab. 2008;295(5):E1009–17.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Deng JY, Huang JP, Lu LS, Hung LM. Impairment of cardiac insulin signaling and myocardial contractile performance in high-cholesterol/fructose-fed rats. Am J Physiol Heart Circ Physiol. 2007;293(2):H978–87.PubMedCrossRefGoogle Scholar
  49. 49.
    Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta. 2005;1734(2):112–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Bopassa JC, Michel P, Gateau-Roesch O, Ovize M, Ferrera R. Low-pressure reperfusion alters mitochondrial permeability transition. Am J Physiol Heart Circ Physiol. 2005;288(6):H2750–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Sarti P, Silver RB, Paroli L, Nikonorov I, Blanck TJ. Permeability of rat heart myocytes to cytochrome c. Cell Mol Life Sci. 1999;56(11–12):1061–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Solskov L, Lofgren B, Kristiansen SB, Jessen N, Pold R, Nielsen TT, et al. Metformin induces cardioprotection against ischaemia/reperfusion injury in the rat heart 24 hours after administration. Basic Clin Pharmacol Toxicol. 2008;103(1):82–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Tanno M, Bassi R, Gorog DA, Saurin AT, Jiang J, Heads RJ, et al. Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia. Circ Res. 2003;93(3):254–61.PubMedCrossRefGoogle Scholar
  55. 55.
    Quindry JC, Hamilton KL, French JP, Lee Y, Murlasits Z, Tumer N, et al. Exercise-induced HSP-72 elevation and cardioprotection against infarct and apoptosis. J Appl Physiol (1985). 2007;103(3):1056–62.CrossRefGoogle Scholar
  56. 56.
    Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol. 2001;3(9):839–43.PubMedCrossRefGoogle Scholar
  57. 57.
    Joshy G, Korda RJ, Attia J, Liu B, Bauman AE, Banks E. Body mass index and incident hospitalisation for cardiovascular disease in 158 546 participants from the 45 and Up study. Int J Obes (Lond). 2014;38(6):848–56.CrossRefGoogle Scholar
  58. 58.
    Andersson C, van Gaal L, Caterson ID, Weeke P, James WP, Coutinho W, et al. Relationship between HbA1c levels and risk of cardiovascular adverse outcomes and all-cause mortality in overweight and obese cardiovascular high-risk women and men with type 2 diabetes. Diabetologia. 2012;55(9):2348–55.PubMedCrossRefGoogle Scholar
  59. 59.
    Poyraz F, Turfan M, Kocaman SA, Yazici HU, Sen N, Tulmac M, et al. Effect of overweight and obesity on the left ventricular systolic and diastolic functions in patients with acute myocardial infarction. Clin Invest Med. 2012;35(4):E229–36.PubMedGoogle Scholar
  60. 60.
    Kadakia MB, Fox CS, Scirica BM, Murphy SA, Bonaca MP, Morrow DA. Central obesity and cardiovascular outcomes in patients with acute coronary syndrome: observations from the MERLIN-TIMI 36 trial. Heart. 2011;97(21):1782–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee SH, Park JS, Kim W, Shin DG, Kim YJ, Kim DS, et al. Impact of body mass index and waist-to-hip ratio on clinical outcomes in patients with ST-segment elevation acute myocardial infarction (from the Korean acute myocardial infarction registry). Am J Cardiol. 2008;102(8):957–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Gastelurrutia P, Pascual-Figal D, Vazquez R, Cygankiewicz I, Shamagian LG, Puig T, et al. Obesity paradox and risk of sudden death in heart failure results from the MUerte subita en insuficiencia cardiaca (MUSIC) study. Am Heart J. 2011;161(1):158–64.PubMedCrossRefGoogle Scholar
  63. 63.
    Kragelund C, Hassager C, Hildebrandt P, Torp-Pedersen C, Kober L. Impact of obesity on long-term prognosis following acute myocardial infarction. Int J Cardiol. 2005;98(1):123–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Wu AH, Pitt B, Anker SD, Vincent J, Mujib M, Ahmed A. Association of obesity and survival in systolic heart failure after acute myocardial infarction: potential confounding by age. Eur J Heart Fail. 2010;12(6):566–73.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Choy B, Hansen E, Moss AJ, McNitt S, Zareba W, Goldenberg I. Relation of body mass index to sudden cardiac death and the benefit of implantable cardioverter-defibrillator in patients with left ventricular dysfunction after healing of myocardial infarction. Am J Cardiol. 2010;105(5):581–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Pingitore A, Di Bella G, Lombardi M, Iervasi G, Strata E, Aquaro GD, et al. The obesity paradox and myocardial infarct size. J Cardiovasc Med (Hagerstown). 2007;8(9):713–7.CrossRefGoogle Scholar
  67. 67.
    Uretsky S, Messerli FH, Bangalore S, Champion A, Cooper-Dehoff RM, Zhou Q, et al. Obesity paradox in patients with hypertension and coronary artery disease. Am J Med. 2007;120(10):863–70.PubMedCrossRefGoogle Scholar
  68. 68.
    Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol. 2001;38(3):789–95.PubMedCrossRefGoogle Scholar
  69. 69.
    Lavie CJ, Alpert MA, Arena R, Mehra MR, Milani RV, Ventura HO. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail. 2013;1(2):93–102.PubMedCrossRefGoogle Scholar
  70. 70.
    Khattab AA, Daemen J, Richardt G, Rioux P, Amann FW, Levy R, et al. Impact of body mass index on the one- year clinical outcome of patients undergoing multivessel revascularization with sirolimus-eluting stents (from the arterial revascularization therapies study part II). Am J Cardiol. 2008;101(11):1550–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Kosuge M, Kimura K, Kojima S, Sakamoto T, Ishihara M, Asada Y, et al. Impact of body mass index on in- hospital outcomes after percutaneous coronary intervention for ST segment elevation acute myocardial infarction. Circ J. 2008;72(4):521–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Sarno G, Raber L, Onuma Y, Garg S, Brugaletta S, van Domburg RT, et al. Impact of body mass index on the five-year outcome of patients having percutaneous coronary interventions with drug-eluting stents. Am J Cardiol. 2011;108(2):195–201.PubMedCrossRefGoogle Scholar
  73. 73.
    Stochmal A, Jasiak-Tyrkalska B, Stochmal E, Huszno B, Kawecka-Jaszcz K. The influence of physical training on metabolic indices in men with myocardial infarction and impaired glucose tolerance. Przegl Lek. 2007;64(6):410–5.PubMedGoogle Scholar
  74. 74.
    Wee CC, Girotra S, Weinstein AR, Mittleman MA, Mukamal KJ. The relationship between obesity and atherosclerotic progression and prognosis among patients with coronary artery bypass grafts the effect of aggressive statin therapy. J Am Coll Cardiol. 2008;52(8):620–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nattayaporn Apaijai
    • 1
    • 2
  • Siriporn C. Chattipakorn
    • 1
    • 3
  • Nipon Chattipakorn
    • 1
    • 2
  1. 1.Cardiac Electrophysiology Research and Training Center, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  2. 2.Cardiac Electrophysiology Unit, Department of Physiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  3. 3.Department of Oral Biology and Diagnostic Sciences, Faculty of DentistryChiang Mai UniversityChiang MaiThailand

Personalised recommendations