Cardiovascular Drugs and Therapy

, Volume 27, Issue 6, pp 541–547 | Cite as

Enhanced NO Signaling in Patients with Takotsubo Cardiomyopathy: Short-Term Pain, Long-Term Gain?

  • Thanh H. Nguyen
  • Christopher J. Neil
  • Aaron L. Sverdlov
  • Doan T. Ngo
  • Wai P. Chan
  • Tamila Heresztyn
  • Yuliy Y. Chirkov
  • Dimitrios Tsikas
  • Michael P. Frenneaux
  • John D. Horowitz



Little information is available concerning the mechanism(s) underlying Takotsubo cardiomyopathy (TTC), other than evidence of associated catecholamine secretion. Given the known effects of catecholamines on endothelial function, we tested the hypothesis that TTC might also be associated with impairment of nitric oxide (NO) signaling. We now report an evaluation of NO signaling in TTC patients (vs. aged-matched controls) in relation to (a) severity of the acute attack and (b) rate of recovery.


In 56 patients with TTC, we utilized (1) platelet responsiveness to NO and (2) plasma levels of asymmetric dimethylarginine (ADMA) as indices of integrity of the cyclic guanosine monophosphate (cGMP) pathway. Additionally, endothelial progenitor cell (EPC) counts, which are partially NO-dependent, were evaluated. These parameters were measured at the time of diagnosis and 3 months thereafter, and compared with an aging female cohort (n = 81).


The data suggested that both NO generation and effect were accentuated in TTC patients: ADMA concentrations were lower (p = 0.003), and responsiveness to NO substantially greater (p = 0.0001) than in controls both acutely and after 3 months. Markers of severity of TTC attacks directly correlated with NO responsiveness, while extent of recovery at 3 months varied inversely with ADMA concentrations.


TTC is associated with intensification of NO signaling relative to that in normal age-matched females. Our data are consistent with this intensified signal’s potential contribution to the extent of initial myocardial injury, but conversely to accelerated recovery.


Takotsubo cardiomyopathy Nitric oxide signalling Platelet responsiveness to NO Asymmetric dimethylarginine 


  1. 1.
    Bybee KA, Kara T, Prasad A, Lerman A, Barsness GW, Wright RS, et al. Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med. 2004;141:858–65.PubMedCrossRefGoogle Scholar
  2. 2.
    Gianni M, Dentali F, Grandi AM, Sumner G, Hiralal R, Lonn E. Apical ballooning syndrome or takotsubo cardiomyopathy: a systematic review. Eur Heart J. 2006;27:1523–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Pilliere R, Mansencal N, Digne F, Lacombe P, Joseph T, Dubourg O. Prevalence of Tako-Tsubo syndrome in a large urban agglomeration. Am J Cardiol. 2006;98:662–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Sharkey SW, Windenburg DC, Lesser JR, Maron MS, Hauser RG, Lesser JN, et al. Natural history and expansive clinical profile of stress (Tako-Tsubo) cardiomyopathy. J Am Coll Cardiol. 2010;55:333–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Akashi Y. Reversible ventricular dysfunction takotsubo (ampulla-shaped) cardiomyopathy. Intern Med. 2005;44:175–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Elesber AA, Prasad A, Lennon RJ, Wright RS, Lerman A, Rihal CS. Four-year recurrence rate and prognosis of the apical ballooning syndrome. J Am Coll Cardiol. 2007;50:448–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Akashi YJ, Nakazawa K, Sakakibara M, Miyake F, Koike H, Sasaka K. The clinical features of takotsubo cardiomyopathy. QJM. 2003;96:563–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–48.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshioka T, Hashimoto A, Tsuchihashi K, Nagao K, Kyuma M, Ooiwa H, et al. Clinical implications of midventricular obstruction and intravenous propranolol use in transient left ventricular apical ballooning (Tako-Tsubo cardiomyopathy). Am Heart J. 2008;155:526 e1–7.CrossRefGoogle Scholar
  10. 10.
    Mallamaci F, Tripepi G, Maas R, Malatino L, Boger R, Zoccali C. Analysis of the relationship between norepinephrine and asymmetric dimethyl arginine levels among patients with end-stage renal disease. J Am Soc Nephrol. 2004;15:435–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee CW, Li D, Channon KM, Paterson DJ. L-arginine supplementation reduces cardiac noradrenergic neurotransmission in spontaneously hypertensive rats. J Mol Cell Cardiol. 2009;47:149–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Chan NY, Seyedi N, Takano K, Levi R. An unsuspected property of natriuretic peptides: promotion of calcium-dependent catecholamine release via protein kinase G-mediated phosphodiesterase type 3 inhibition. Circulation. 2012;125:298–307.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A. 2001;98:1607–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O’Gara P, et al. High levels of circulating epinephrine trigger apical cardiodepression in a beta2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation. 2012;126:697–706.PubMedCrossRefGoogle Scholar
  15. 15.
    Grant JF, Chittleborough CR, Taylor AW, Dal Grande E, Wilson DH, Phillips PJ, et al. The North West Adelaide Health Study: detailed methods and baseline segmentation of a cohort for selected chronic diseases. Epidemiol Perspect Innov. 2006;3:4.PubMedCrossRefGoogle Scholar
  16. 16.
    Chirkov YY, Holmes AS, Willoughby SR, Stewart S, Wuttke RD, Sage PR, et al. Stable angina and acute coronary syndromes are associated with nitric oxide resistance in platelets. J Am Coll Cardiol. 2001;37:1851–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Boger RH. Asymmetric dimethylarginine (ADMA) modulates endothelial function–therapeutic implications. Vasc Med. 2003;8:149–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Fleissner F, Thum T. Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. Antioxid Redox Signal. 2011;15:933–48.PubMedCrossRefGoogle Scholar
  19. 19.
    Chirkov YY, Holmes AS, Chirkova LP, Horowitz JD. Nitrate resistance in platelets from patients with stable angina pectoris. Circulation. 1999;100:129–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Heresztyn T, Worthley MI, Horowitz JD. Determination of l-arginine and NG, NG - and NG, NG’ -dimethyl-L-arginine in plasma by liquid chromatography as AccQ-Fluor fluorescent derivatives. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;805:325–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Rajendran S, Willoughby SR, Chan WP, Liberts EA, Heresztyn T, Saha M, et al. Polycystic ovary syndrome is associated with severe platelet and endothelial dysfunction in both obese and lean subjects. Atherosclerosis. 2009;204:509–14.PubMedCrossRefGoogle Scholar
  22. 22.
    Lagerstedt SA, O’Kane DJ, Singh RJ. Measurement of plasma free metanephrine and normetanephrine by liquid chromatography-tandem mass spectrometry for diagnosis of pheochromocytoma. Clin Chem. 2004;50:603–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Nguyen TH, Neil CJ, Sverdlov AL, Mahadavan G, Chirkov YY, Kucia AM, et al. N-terminal pro-brain natriuretic protein levels in takotsubo cardiomyopathy. Am J Cardiol. 2011;108:1316–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2:358–67.PubMedGoogle Scholar
  25. 25.
    Neil C, Nguyen TH, Kucia A et al. Slowly resolving global myocardial inflammation/oedema in Tako-Tsubo cardiomyopathy: evidence from T2-weighted cardiac MRI. Heart (British Cardiac Society) 2012;98:1278–84.Google Scholar
  26. 26.
    Nef HM, Mollmann H, Hilpert P, Troidl C, Voss S, Rolf A, et al. Activated cell survival cascade protects cardiomyocytes from cell death in Tako-Tsubo cardiomyopathy. Eur J Heart Fail. 2009;11:758–64.PubMedCrossRefGoogle Scholar
  27. 27.
    Forbes SP, Druhan LJ, Guzman JE, Parinandi N, Zhang L, Green-Church KB, et al. Mechanism of 4-HNE mediated inhibition of hDDAH-1: implications in no regulation. Biochemistry. 2008;47:1819–26.PubMedCrossRefGoogle Scholar
  28. 28.
    Pope AJ, Druhan L, Guzman JE, Forbes SP, Murugesan V, Lu D, et al. Role of DDAH-1 in lipid peroxidation product-mediated inhibition of endothelial NO generation. Am J Physiol Cell Physiol. 2007;293:C1679–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Fiedler L. The DDAH/ADMA pathway is a critical regulator of NO signalling in vascular homeostasis. Cell Adh Migr. 2008;2:149–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Stuhlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation. 2001;104:2569–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Antoniades C, Shirodaria C, Leeson P, Antonopoulos A, Warrick N, Van-Assche T, et al. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis. Eur Heart J. 2009;30:1142–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J. 2008;155:408–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Anfossi G, Russo I, Massucco P, Mattiello L, Trovati M. Catecholamines, via beta-adrenoceptors, increase intracellular concentrations of 3′,5′-cyclic guanosine monophosphate (cGMP) through nitric oxide in human platelets. Thromb Haemost. 2002;87:539–40.PubMedGoogle Scholar
  34. 34.
    Ozuyaman B, Godecke A, Kusters S, Kirchhoff E, Scharf RE, Schrader J. Endothelial nitric oxide synthase plays a minor role in inhibition of arterial thrombus formation. Thromb Haemost. 2005;93:1161–7.PubMedGoogle Scholar
  35. 35.
    Chirkov YY, Horowitz JD. Impaired tissue responsiveness to organic nitrates and nitric oxide: a new therapeutic frontier? Pharmacol Ther. 2007;116:287–305.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang F, Chen L, Liu C, Qiu P, Wang A, Li L, et al. Up-regulation of protein tyrosine nitration in methamphetamine-induced neurotoxicity through DDAH/ADMA/NOS pathway. Neurochem Int. 2013;62:1055–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Kume T, Kawamoto T, Okura H, Toyota E, Neishi Y, Watanabe N, et al. Local release of catecholamines from the hearts of patients with Tako-Tsubo-like left ventricular dysfunction. Circ J. 2008;72:106–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Penna C, Bassino E, Alloatti G. Platelet activating factor: the good and the bad in the ischemic/reperfused heart. Exp Biol Med (Maywood). 2011;236:390–401.CrossRefGoogle Scholar
  39. 39.
    Barletta G, Del Pace S, Boddi M, Del Bene R, Salvadori C, Bellandi B, et al. Abnormal coronary reserve and left ventricular wall motion during cold pressor test in patients with previous left ventricular ballooning syndrome. Eur Heart J. 2009;30:3007–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Martin EA, Prasad A, Rihal CS, Lerman LO, Lerman A. Endothelial function and vascular response to mental stress are impaired in patients with apical ballooning syndrome. J Am Coll Cardiol. 2010;56:1840–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Song BG, Park SJ, Noh HJ, Jo HC, Choi JO, Lee SC, et al. Clinical characteristics, and laboratory and echocardiographic findings in takotsubo cardiomyopathy presenting as cardiogenic shock. J Crit Care. 2010;25:329–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Boucher JL, Moali C, Tenu JP. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol Life Sci. 1999;55:1015–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992;339:572–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Chong CR, Law G, Neil CJ, Nguyen TH, Horowitz JD. Dissociation between severity of takotsubo cardiomyopathy and presentation with shock or hypotension. Clin Cardiol. 2013;36:401–6.Google Scholar
  45. 45.
    Lee DI, Vahebi S, Tocchetti CG, Barouch LA, Solaro RJ, Takimoto E, et al. PDE5A suppression of acute beta-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKG-mediated troponin I phosphorylation. Basic Res Cardiol. 2010;105:337–47.PubMedCrossRefGoogle Scholar
  46. 46.
    Li D, Qu Y, Tao L, Liu H, Hu A, Gao F, et al. Inhibition of iNOS protects the aging heart against beta-adrenergic receptor stimulation-induced cardiac dysfunction and myocardial ischemic injury. J Surg Res. 2006;131:64–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Valbusa A, Abbadessa F, Giachero C, Vischi M, Zingarelli A, Olivieri R, et al. Long-term follow-up of Tako-Tsubo-like syndrome: a retrospective study of 22 cases. J Cardiovasc Med (Hagerstown). 2008;9:805–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Thanh H. Nguyen
    • 1
  • Christopher J. Neil
    • 1
  • Aaron L. Sverdlov
    • 1
  • Doan T. Ngo
    • 1
  • Wai P. Chan
    • 1
  • Tamila Heresztyn
    • 1
  • Yuliy Y. Chirkov
    • 1
  • Dimitrios Tsikas
    • 2
  • Michael P. Frenneaux
    • 3
  • John D. Horowitz
    • 1
    • 4
  1. 1.The Queen Elizabeth Hospital, Department of CardiologyThe University of AdelaideAdelaideAustralia
  2. 2.Institute of Clinical Pharmacology, Hannover Medical SchoolHannoverGermany
  3. 3.The University of AberdeenAberdeenUK
  4. 4.Cardiology UnitThe Queen Elizabeth HospitalWoodville SouthAustralia

Personalised recommendations