Skip to main content
Log in

New Therapies Targeting apoB Metabolism for High-Risk Patients with Inherited Dyslipidaemias: What Can the Clinician Expect?

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Apolipoprotein B (apoB) has a key role in the assembly and secretion of very low-density lipoprotein (VLDL) from the liver. Plasma apoB concentration affects the number of circulating atherogenic particles, and serves as an independent predictor of the risk of atherosclerotic cardiovascular disease. While statins are the most potent apoB-lowering agents currently prescribed, their efficacy in achieving therapeutic targets for low-density lipoprotein cholesterol (LDL-C) in high-risk patients, such as those with familial hypercholesterolaemia (FH), is limited. Resistance and intolerance to statins also occurs in a significant number of patients, necessitating new types of lipid-lowering therapies. Monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9; AMG 145 and REGN727), a sequence-specific antisense oligonucleotide against apoB mRNA (mipomersen) and a synthetic inhibitor of microsomal triglyceride transfer protein (MTTP; lomitapide) have been tested in phase III clinical trials, particularly in patients with FH. The trials demonstrated the efficacy of these agents in lowering apoB, LDL-C, non-high-density lipoprotein cholesterol and lipoprotein(a) by 32–55 %, 37–66 %, 38–61 % and 22–50 % (AMG 145), 21–68 %, 29–72 %, 16–60 % and 8–36 % (REGN727), 16–71 %, 15–71 %, 12–66 % and 23–49 % (mipomersen) and 24–55 %, 25–51 %, 27–50 % and 15–19 % (lomitapide), respectively. Monoclonal antibodies against PCSK9 have an excellent safety profile and may be indicated not only in heterozygous FH, but also in statin-intolerant patients and those with other inherited dyslipidemias, such as familial combined hyperlipidaemia and familial elevation in Lp(a). Mipomersen and lomitapide increase hepatic fat content and are at present indicated for treating adult patients with homozygous FH alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis RA. Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. Biochim Biophys Acta. 1999;1440:1–31.

    Article  PubMed  CAS  Google Scholar 

  2. Elovson J, Chatterton JE, Bell GT, et al. Plasma very low density lipoproteins contain a single molecule of apolipoprotein B. J Lipid Res. 1988;29:1461–73.

    PubMed  CAS  Google Scholar 

  3. Goldstein J, Hobbs H, Brown M. Familial hypercholesterolemia. In: Valle D, Scriber CR, Beaudet A, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw Hill; 2001. p. 2863–913.

    Google Scholar 

  4. Sankatsing RR, Fouchier SW, de Haan S, et al. Hepatic and cardiovascular consequences of familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol. 2005;25:1979–84.

    Article  PubMed  CAS  Google Scholar 

  5. Schonfeld G, Lin X, Yue P. Familial hypobetalipoproteinemia: genetics and metabolism. Cell Mol Life Sci. 2005;62:1372–8.

    Article  PubMed  CAS  Google Scholar 

  6. Neil HA, Hammond T, Huxley R, Matthews DR, Humphries SE. Extent of underdiagnosis of familial hypercholesterolaemia in routine practice: prospective registry study. BMJ. 2000;321:148.

    Article  PubMed  CAS  Google Scholar 

  7. Moorjani S, Roy M, Gagne C, et al. Homozygous familial hypercholesterolemia among French Canadians in Quebec province. Arteriosclerosis. 1989;9:211–6.

    Article  PubMed  CAS  Google Scholar 

  8. Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2007;4:214–25.

    Article  PubMed  CAS  Google Scholar 

  9. Marks D, Thorogood M, Neil HAW, Wonderling D, Humphries SE. Comparing costs and benefits over a 10 year period for strategies for familial hypercholesterolaemia screening. J Public Health Med. 2003;25:47–52.

    Article  PubMed  Google Scholar 

  10. World Health Organization. Familial hypercholesterolaemia: report of a WHO consultation. Paris: World Health Organisation; 1997.

    Google Scholar 

  11. Fahed AC, Nemer GM. Familial hypercholesterolemia: the lipids or the genes? Nutr Metab (Lond). 2011;8:23.

    Article  CAS  Google Scholar 

  12. Neefjes LA, Ten Kate GJ, Rossi A, et al. CT coronary plaque burden in asymptomatic patients with familial hypercholesterolaemia. Heart. 2011;97:1151–7.

    Article  PubMed  Google Scholar 

  13. Neefjes LA, Ten Kate GJ, Alexia R, et al. Accelerated subclinical coronary atherosclerosis in patients with familial hypercholesterolemia. Atherosclerosis. 2011;219:721–7.

    Article  PubMed  CAS  Google Scholar 

  14. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973;52:1544–68.

    Article  PubMed  CAS  Google Scholar 

  15. Veerkamp MJ, de Graaf J, Stalenhoef AF. Role of insulin resistance in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 2005;25:1026–31.

    Article  PubMed  CAS  Google Scholar 

  16. Brunzell J, Albers JJ, Chait A, Grundy SM, Groszek E, McDonald GB. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res. 1983;24:147–55.

    PubMed  CAS  Google Scholar 

  17. Sniderman A, Shapiro S, Marpole D, Skinner B, Teng B, Kwiterovich Jr PO. Association of coronary atherosclerosis with hyperapobetalipoproteinemia [increased protein but normal cholesterol levels in human plasma low density (beta) lipoproteins]. Proc Natl Acad Sci U S A. 1980;77:604–8.

    Article  PubMed  CAS  Google Scholar 

  18. Brouwers MC, van Greevenbroek MM, Stehouwer CD, de Graaf J, Stalenhoef AF. The genetics of familial combined hyperlipidaemia. Nat Rev Endocrinol. 2012;8:352–62.

    PubMed  CAS  Google Scholar 

  19. Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002;43:1363–79.

    Article  PubMed  CAS  Google Scholar 

  20. Rizzo M, Berneis K. The clinical relevance of low-density-lipoproteins size modulation by statins. Cardiovasc Drugs Ther. 2006;20:205–17.

    Article  PubMed  CAS  Google Scholar 

  21. Hirayama S, Miida T. Small dense LDL: an emerging risk factor for cardiovascular disease. Clin Chim Acta. 2012;414:215–24.

    Article  PubMed  CAS  Google Scholar 

  22. Tsimikas S, Hall JL. Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. J Am Coll Cardiol. 2012;60:716–21.

    Article  PubMed  CAS  Google Scholar 

  23. Lippi G, Guidi G. Lipoprotein(a): an emerging cardiovascular risk factor. Crit Rev Clin Lab Sci. 2003;40:1–42.

    Article  PubMed  CAS  Google Scholar 

  24. Emerging Risk Factors Collaboration, Erqou S, Kaptoge S, Perry PL, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302:412–23.

    Article  PubMed  CAS  Google Scholar 

  25. Enas EA, Chacko V, Senthilkumar A, Puthumana N, Mohan V. Elevated lipoprotein(a)–a genetic risk factor for premature vascular disease in people with and without standard risk factors: a review. Dis Mon. 2006;52:5–50.

    Article  PubMed  Google Scholar 

  26. Kostner KM, Kostner GM. Therapy of Hyper-Lp(a). Handb Exp Pharmacol. 2005;170:519–36.

    Article  PubMed  CAS  Google Scholar 

  27. Hobbs HH, White AL. Lipoprotein(a): intrigues and insights. Curr Opin Lipidol. 1999;10:225–36.

    Article  PubMed  CAS  Google Scholar 

  28. Lindahl G, Gersdorf E, Menzel HJ, et al. The gene for the Lp(a)-specific glycoprotein is closely linked to the gene for plasminogen on chromosome 6. Hum Genet. 1989;81:149–52.

    Article  PubMed  CAS  Google Scholar 

  29. Kraft HG, Lingenhel A, Kochl S, et al. Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler Thromb Vasc Biol. 1996;16:713–9.

    Article  PubMed  CAS  Google Scholar 

  30. Marcovina SM, Albers JJ, DR Jr J, et al. Lipoprotein[a] concentrations and apolipoprotein[a] phenotypes in Caucasians and African Americans. The CARDIA study. Arterioscler Thromb. 1993;13:1037–45.

    Article  PubMed  CAS  Google Scholar 

  31. Marcovina SM, Albers JJ, Wijsman E, et al. Differences in Lp[a] concentrations and apo[a] polymorphs between black and white Americans. J Lipid Res. 1996;37:2569–85.

    PubMed  CAS  Google Scholar 

  32. Kostner GM. Lipoprotein(a): Metabolismus und Beeinflussung des Plasmaspiegels. J Kardiol. 2002;9:321–4.

    Google Scholar 

  33. Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31:2844–53.

    Article  PubMed  CAS  Google Scholar 

  34. Genest Jr JJ, Martin-Munley SS, McNamara JR, et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation. 1992;85:2025–33.

    Article  PubMed  Google Scholar 

  35. Kamstrup PR. Lipoprotein(a) and ischemic heart disease – a causal association? A review. Atherosclerosis. 2010;211:15–23.

    Article  PubMed  CAS  Google Scholar 

  36. Davidson MH. Reducing residual risk for patients on statin therapy: the potential role of combination therapy. Am J Cardiol. 2005;7:3K–13.

    Article  Google Scholar 

  37. Fruchart JC, Sacks FM, Hermans MP, Residual Risk Reduction Initiative (R3I). Residual Risk Reduction Initiative (R3I), et al. The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in dyslipidaemic patient. Diab Vasc Dis Res. 2008;5:319–35.

    Article  PubMed  Google Scholar 

  38. Ballantyne CM, Andrews TC, Hsia JA, Kramer JH, Shear C, ACCESS Study Group. Atorvastatin Comparative Cholesterol Efficacy and Safety Study Correlation of non-high-density lipoprotein cholesterol with apolipoprotein B: effect of 5 hydroxymethylglutaryl coenzyme A reductase inhibitors on non-high-density lipoprotein cholesterol levels. Am J Cardiol. 2001;88:265–9.

    Article  PubMed  CAS  Google Scholar 

  39. Kastelein JJ, van der Steeg WA, Holme I, et al. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation. 2008;117:3002–9.

    Article  PubMed  CAS  Google Scholar 

  40. Graaf D, Couture P, Sniderman A. A diagnostic algorithm for the atherogenic apolipoprotein B dyslipoproteinaemias. Nat Clin Pract Endocrinol Metab. 2008;4:608–18.

    Article  PubMed  Google Scholar 

  41. Reiner Ž, Catapano AL, De Backer G, et al. ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2011;32:1769–818.

    Article  PubMed  Google Scholar 

  42. Robinson JG, Goldberg AC. Treatment of adults with familial hypercholesterolemia and evidence for treatment: recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5:S18–29.

    Article  PubMed  Google Scholar 

  43. Wiviott SD, Cannon CP, Morrow DA, Ray KK, Pfeffer MA, Braunwald E. Can low-density lipoprotein be too low? The safety and efficacy of achieving very low low-density lipoprotein with intensive statin therapy: a PROVE IT-TIMI 22 substudy. J Am Coll Cardiol. 2005;46:1411–6.

    Article  PubMed  CAS  Google Scholar 

  44. Schwartz GG, Olsson AG, Ezekowitz MD, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA. 2001;285:1711–8.

    Article  PubMed  CAS  Google Scholar 

  45. de Lemos JA, Blazing MA, Wiviott SD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA. 2004;292:1307–16.

    Article  PubMed  Google Scholar 

  46. Jones P, Kafonek S, Laurora I, Hunninghake D. Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the curves study). Am J Cardiol. 1998;81:582–7.

    Article  PubMed  CAS  Google Scholar 

  47. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–39.

    Article  PubMed  Google Scholar 

  48. Hsia J, MacFadyen JG, Monyak J, Ridker PM. Cardiovascular event reduction and adverse events among subjects attaining lowdensity lipoprotein cholesterol <50 mg/dl with rosuvastatin. The JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). J Am Coll Cardiol. 2011;57:1666–75.

    Article  PubMed  CAS  Google Scholar 

  49. Harper CR, Jacobson TA. The broad spectrum of statin myopathy: from myalgia to rhabdomyolysis. Curr Opin Lipidol. 2007;18:401–8.

    Article  PubMed  CAS  Google Scholar 

  50. Golomb BA, Evans MA. Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs. 2008;8:373–418.

    Article  PubMed  CAS  Google Scholar 

  51. Artenstein AW, Opal SM. Proprotein convertases in health and disease. N Engl J Med. 2011;365:2507–18.

    Article  PubMed  CAS  Google Scholar 

  52. Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade. J Lipid Res. 2012;53:2515–24.

    Article  PubMed  CAS  Google Scholar 

  53. Rhainds D, Arsenault BJ, Tardif JC. PCSK9 inhibition and LDL cholesterol lowering: the biology of an attractive therapeutic target and critical review of the latest clinical trials. Clin Lipidol. 2012;7:621–40.

    Article  CAS  Google Scholar 

  54. Catapano AL, Papadopoulos N. The safety of therapeutic monoclonal antibodies: implications for cardiovascular disease and targeting the PCSK9 pathway. Atherosclerosis. 2013;228:18–28.

    Article  PubMed  CAS  Google Scholar 

  55. Dowdall M. Highlighting the future potential of PCSK9-targeted therapeutics. Clin Lipidol. 2012;7:599–601.

    Article  CAS  Google Scholar 

  56. Tavori H, Fazio S, Linton MF. PCSK9, a novel target for lowering LDL cholesterol: promise and progress. Clin Lipidol. 2012;7:611–5.

    Article  CAS  Google Scholar 

  57. Dias CS, Shaywitz AJ, Wasserman SM, et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2011;60:1888–98.

    Article  Google Scholar 

  58. Giugliano RP, Desai NR, Kohli P, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380:2007–17.

    Article  PubMed  CAS  Google Scholar 

  59. Koren MJ, Scott R, Kim JB, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012;380:1995–2006.

    Article  PubMed  CAS  Google Scholar 

  60. Sullivan D, Olsson AG, Scott R, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 2012;308:2497–506.

    Article  PubMed  CAS  Google Scholar 

  61. Raal F, Scott R, Somaratne R, et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL-C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation. 2012;126:2408–17.

    Article  PubMed  CAS  Google Scholar 

  62. Stein EA, Mellis S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366:1108–18.

    Article  PubMed  CAS  Google Scholar 

  63. McKenney J, Koren M, Kereiakes D, Hanotin C, Ferrand A, Stein A. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59:2344–53.

    Article  PubMed  CAS  Google Scholar 

  64. Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med. 2012;367:1891–900.

    Article  PubMed  CAS  Google Scholar 

  65. Stein EA, Gipe D, Bergeron J, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce lowdensity lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380:29–36.

    Article  PubMed  CAS  Google Scholar 

  66. Crooke RM, Baker BF, Wedel M. Cardiovascular therapeutic applications in antisense drug technology; principles, strategies and applications. 2nd ed. Boca Raton: CRC Press; 2007. p. 601–39.

    Book  Google Scholar 

  67. Kastelein JJ, Wedel MK, Baker BF, et al. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by shortterm administration of an antisense inhibitor of apolipoprotein B. Circulation. 2006;114:1729–35.

    Article  PubMed  CAS  Google Scholar 

  68. Akdim F, Visser ME, Tribble DL, et al. Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia. Am J Cardiol. 2010;5:1413–9.

    Article  Google Scholar 

  69. Visser ME, Akdim F, Tribble DL, et al. Effect of apolipoprotein-B synthesis inhibition on liver triglyceride content in patients with familial hypercholesterolemia. J Lipid Res. 2010;51:1057–62.

    Article  PubMed  CAS  Google Scholar 

  70. Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006.

    Article  PubMed  CAS  Google Scholar 

  71. Akdim F, Stroes ES, Sijbrands EJ, et al. Efficacy and safety of mipomersen, an antisense inhibitor of apolipoprotein B, in hypercholesterolemic subjects receiving stable statin therapy. J Am Coll Cardiol. 2010;55:1611–8.

    Article  PubMed  CAS  Google Scholar 

  72. Akdim F, Tribble DL, Flaim JD, et al. Efficacy of apolipoprotein B synthesis inhibition in subjects with mild-to-moderate hyperlipidaemia. Eur Heart J. 2011;32:2650–9.

    Article  PubMed  CAS  Google Scholar 

  73. Visser ME, Wagener G, Baker BF, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur Heart J. 2012;33:1142–9.

    Article  PubMed  CAS  Google Scholar 

  74. McGowan MP, Tardif JC, Ceska R, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One. 2012;7:49006.

    Article  Google Scholar 

  75. Stein EA, Dufour R, Gagne C, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126:2283–92.

    Article  PubMed  CAS  Google Scholar 

  76. Yu RZ, Geary RS, Flaim JD, et al. Lack of pharmacokinetic interaction of mipomersen sodium (ISIS 301012), a 2′-O-methoxyethyl modified antisense oligonucleotide targeting apolipoprotein B-100 messenger RNA, with simvastatin and ezetimibe. Clin Pharmacokinet. 2009;48:39–50.

    Article  PubMed  CAS  Google Scholar 

  77. Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res. 2003;44:22–32.

    Article  PubMed  CAS  Google Scholar 

  78. Hussain MM, Bakillah A. New approaches to target microsomal triglyceride transfer protein. Curr Opin Lipidol. 2008;19:572–8.

    Article  PubMed  CAS  Google Scholar 

  79. Cuchel M, Bloedon LT, Szapary PO, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356:148–56.

    Article  PubMed  CAS  Google Scholar 

  80. Samaha FF, McKenney J, Bloedon LT, Sasiela WJ, Rader DJ. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2008;5:497–505.

    Article  PubMed  CAS  Google Scholar 

  81. Cuchel M, Meagher EA, du Toit Theron H, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381:40–6.

    Article  PubMed  CAS  Google Scholar 

  82. Chandler CE, Wilder DE, Pettini JL, et al. CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J Lipid Res. 2003;44:1887–901.

    Article  PubMed  CAS  Google Scholar 

  83. Mera Y, Odani N, Kawai T, et al. Pharmacological characterization of diethyl-2-({3-dimethylcarbamoyl-4-[(4′-trifluoromethylbiphenyl-2-carbonyl) amino]phenyl}acetyloxymethyl)-2-phenylmalonate (JTT-130), an intestine-specific inhibitor of microsomal triglyceride transfer protein. J Pharmacol Exp Ther. 2011;336:321–7.

    Article  PubMed  CAS  Google Scholar 

  84. Dunbar RL, Bloedon LT, Gadi R, et al. Impact of high doses of the mtp-inhibitor, AEGR-733, on the single dose pharmacokinetics of atorvastatin and rosuvastatin. 2009. Retrieved May 30, 2013, 2011, from: http://www.aegerion.com/Collateral/Documents/English-US/ISA_2009_-_PK_high_dose_lomitapide_with_statin.pdf.

  85. Duffy D, Bloedon LT, Dunbar RL, et al. Impact of the MTP Inhibitor AEGR-733 on Pharmacokinetics of Statins. 2007. Retrieved May 30, 2013, 2011, from: http://www.aegerion.com/Collateral/Documents/English-US/DALM_2007-_effects_of_lomitapide_on_PK_with_statins.pdf.

  86. Dunbar RL, Bloedon LT, Duffy D, et al. Impact of the MTP Inhibitor AEGR-733 on pharmacokinetics of fenofibrate. 2007. Retrieved May 30, 2013, 2011, from: http://www.aegerion.com/Collateral/Documents/English-US/DALM_2007_-_effects_of_lomitapide_on_PK_with_fenofibrate.pdf.

  87. Dunbar RL, Bloedon LT, Gadi R, et al. Impact of high doses of the MTP-inhibitor lomitapide (AEGR-733) on the single-dose pharmacokinetics of extended-release niacin. 2009. Retrieved May 30, 2013, 2011, from: http://www.aegerion.com/Collateral/Documents/English-US/ISA_2009_-_PK_high_dose_lomitapide_with_Niacin.pdf.

  88. Zamel R, Khan R, Pollex RL, Hegele RA. Abetalipoproteinemia: two case reports and literature review. Orphanet J Rare Dis. 2008;3:19.

    Article  PubMed  Google Scholar 

  89. Thompson GR. The evidence-base for the efficacy of lipoprotein apheresis in combating cardiovascular disease. Atheroscler Suppl. 2013 Jan;14(1):67–70.

  90. Stefanutti C, Julius U. Lipoprotein apheresis: state of the art and novelties. Atheroscler Suppl. 2013;14:19–27.

    Article  PubMed  CAS  Google Scholar 

  91. Herbert B, Patel D, Waddington SN, et al. Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler Thromb Vasc Biol. 2010;30:1333–9.

    Google Scholar 

  92. Ouguerrram K et al. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler Thromb Vasc Biol. 2004;8:1448–53.

    Article  Google Scholar 

  93. Le May C, Kourimate S, Langhi C, et al. PCSK9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29:684–90.

    Article  PubMed  Google Scholar 

  94. Rashid S, Curtis DE, Garuti R, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A. 2005;102:5374–9.

    Article  PubMed  CAS  Google Scholar 

  95. Hoover-Plow J, Huang M. Lipoprotein(a) metabolism: potential sites for therapeutic targets. Metabolism: Clinical and Experimental. 2013;62(4):479–91. +nordesgaard.

    Article  CAS  Google Scholar 

  96. Rader DJ, Cain W, Ikewaki K, et al. The inverse association of plasma lipoprotein(a) concentrations with apolipoprotein(a) isoform size is not due to differences in Lp(a) catabolism but to differences in production rate. J Clin Invest. 1994;93:2758–63.

    Article  PubMed  CAS  Google Scholar 

  97. Koschinsky ML, Marcovina SM. Structure-function relationships in apolipoprotein(a): insights into lipoprotein(a) assembly and pathogenicity. Curr Opin Lipidol. 2004;15:167–74.

    Article  PubMed  CAS  Google Scholar 

  98. Lippi G, Targher G. Optimal therapy for reduction of lipoprotein(a). J Clin Pharm Ther. 2012;37:1–3.

    Article  PubMed  CAS  Google Scholar 

  99. Marchesini G, Marzocchi R, Agostini F, Bugianesi E. Nonalcoholic fatty liver disease and the metabolic syndrome. Curr Opin Lipidol. 2005;16:421–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

GFW has received lecture fees from Genzyme and has served as an advisor to Sanofi-Aventis, Genzyme and Amgen Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald F. Watts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahebkar, A., Watts, G.F. New Therapies Targeting apoB Metabolism for High-Risk Patients with Inherited Dyslipidaemias: What Can the Clinician Expect?. Cardiovasc Drugs Ther 27, 559–567 (2013). https://doi.org/10.1007/s10557-013-6479-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-013-6479-4

Keywords

Navigation