Advertisement

Cardiovascular Drugs and Therapy

, Volume 27, Issue 6, pp 559–567 | Cite as

New Therapies Targeting apoB Metabolism for High-Risk Patients with Inherited Dyslipidaemias: What Can the Clinician Expect?

  • Amirhossein Sahebkar
  • Gerald F. Watts
REVIEW ARTICLE

Abstract

Apolipoprotein B (apoB) has a key role in the assembly and secretion of very low-density lipoprotein (VLDL) from the liver. Plasma apoB concentration affects the number of circulating atherogenic particles, and serves as an independent predictor of the risk of atherosclerotic cardiovascular disease. While statins are the most potent apoB-lowering agents currently prescribed, their efficacy in achieving therapeutic targets for low-density lipoprotein cholesterol (LDL-C) in high-risk patients, such as those with familial hypercholesterolaemia (FH), is limited. Resistance and intolerance to statins also occurs in a significant number of patients, necessitating new types of lipid-lowering therapies. Monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9; AMG 145 and REGN727), a sequence-specific antisense oligonucleotide against apoB mRNA (mipomersen) and a synthetic inhibitor of microsomal triglyceride transfer protein (MTTP; lomitapide) have been tested in phase III clinical trials, particularly in patients with FH. The trials demonstrated the efficacy of these agents in lowering apoB, LDL-C, non-high-density lipoprotein cholesterol and lipoprotein(a) by 32–55 %, 37–66 %, 38–61 % and 22–50 % (AMG 145), 21–68 %, 29–72 %, 16–60 % and 8–36 % (REGN727), 16–71 %, 15–71 %, 12–66 % and 23–49 % (mipomersen) and 24–55 %, 25–51 %, 27–50 % and 15–19 % (lomitapide), respectively. Monoclonal antibodies against PCSK9 have an excellent safety profile and may be indicated not only in heterozygous FH, but also in statin-intolerant patients and those with other inherited dyslipidemias, such as familial combined hyperlipidaemia and familial elevation in Lp(a). Mipomersen and lomitapide increase hepatic fat content and are at present indicated for treating adult patients with homozygous FH alone.

Keywords

Dyslipidaemia Apolipoproteins Cholesterol Monoclonal antibody Antisense oligonucleotide Randomized controlled trial 

Notes

Conflict of interest

GFW has received lecture fees from Genzyme and has served as an advisor to Sanofi-Aventis, Genzyme and Amgen Corporation.

References

  1. 1.
    Davis RA. Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. Biochim Biophys Acta. 1999;1440:1–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Elovson J, Chatterton JE, Bell GT, et al. Plasma very low density lipoproteins contain a single molecule of apolipoprotein B. J Lipid Res. 1988;29:1461–73.PubMedGoogle Scholar
  3. 3.
    Goldstein J, Hobbs H, Brown M. Familial hypercholesterolemia. In: Valle D, Scriber CR, Beaudet A, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw Hill; 2001. p. 2863–913.Google Scholar
  4. 4.
    Sankatsing RR, Fouchier SW, de Haan S, et al. Hepatic and cardiovascular consequences of familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol. 2005;25:1979–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Schonfeld G, Lin X, Yue P. Familial hypobetalipoproteinemia: genetics and metabolism. Cell Mol Life Sci. 2005;62:1372–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Neil HA, Hammond T, Huxley R, Matthews DR, Humphries SE. Extent of underdiagnosis of familial hypercholesterolaemia in routine practice: prospective registry study. BMJ. 2000;321:148.PubMedCrossRefGoogle Scholar
  7. 7.
    Moorjani S, Roy M, Gagne C, et al. Homozygous familial hypercholesterolemia among French Canadians in Quebec province. Arteriosclerosis. 1989;9:211–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2007;4:214–25.PubMedCrossRefGoogle Scholar
  9. 9.
    Marks D, Thorogood M, Neil HAW, Wonderling D, Humphries SE. Comparing costs and benefits over a 10 year period for strategies for familial hypercholesterolaemia screening. J Public Health Med. 2003;25:47–52.PubMedCrossRefGoogle Scholar
  10. 10.
    World Health Organization. Familial hypercholesterolaemia: report of a WHO consultation. Paris: World Health Organisation; 1997.Google Scholar
  11. 11.
    Fahed AC, Nemer GM. Familial hypercholesterolemia: the lipids or the genes? Nutr Metab (Lond). 2011;8:23.CrossRefGoogle Scholar
  12. 12.
    Neefjes LA, Ten Kate GJ, Rossi A, et al. CT coronary plaque burden in asymptomatic patients with familial hypercholesterolaemia. Heart. 2011;97:1151–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Neefjes LA, Ten Kate GJ, Alexia R, et al. Accelerated subclinical coronary atherosclerosis in patients with familial hypercholesterolemia. Atherosclerosis. 2011;219:721–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973;52:1544–68.PubMedCrossRefGoogle Scholar
  15. 15.
    Veerkamp MJ, de Graaf J, Stalenhoef AF. Role of insulin resistance in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 2005;25:1026–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Brunzell J, Albers JJ, Chait A, Grundy SM, Groszek E, McDonald GB. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res. 1983;24:147–55.PubMedGoogle Scholar
  17. 17.
    Sniderman A, Shapiro S, Marpole D, Skinner B, Teng B, Kwiterovich Jr PO. Association of coronary atherosclerosis with hyperapobetalipoproteinemia [increased protein but normal cholesterol levels in human plasma low density (beta) lipoproteins]. Proc Natl Acad Sci U S A. 1980;77:604–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Brouwers MC, van Greevenbroek MM, Stehouwer CD, de Graaf J, Stalenhoef AF. The genetics of familial combined hyperlipidaemia. Nat Rev Endocrinol. 2012;8:352–62.PubMedGoogle Scholar
  19. 19.
    Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002;43:1363–79.PubMedCrossRefGoogle Scholar
  20. 20.
    Rizzo M, Berneis K. The clinical relevance of low-density-lipoproteins size modulation by statins. Cardiovasc Drugs Ther. 2006;20:205–17.PubMedCrossRefGoogle Scholar
  21. 21.
    Hirayama S, Miida T. Small dense LDL: an emerging risk factor for cardiovascular disease. Clin Chim Acta. 2012;414:215–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Tsimikas S, Hall JL. Lipoprotein(a) as a potential causal genetic risk factor of cardiovascular disease: a rationale for increased efforts to understand its pathophysiology and develop targeted therapies. J Am Coll Cardiol. 2012;60:716–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Lippi G, Guidi G. Lipoprotein(a): an emerging cardiovascular risk factor. Crit Rev Clin Lab Sci. 2003;40:1–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Emerging Risk Factors Collaboration, Erqou S, Kaptoge S, Perry PL, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302:412–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Enas EA, Chacko V, Senthilkumar A, Puthumana N, Mohan V. Elevated lipoprotein(a)–a genetic risk factor for premature vascular disease in people with and without standard risk factors: a review. Dis Mon. 2006;52:5–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Kostner KM, Kostner GM. Therapy of Hyper-Lp(a). Handb Exp Pharmacol. 2005;170:519–36.PubMedCrossRefGoogle Scholar
  27. 27.
    Hobbs HH, White AL. Lipoprotein(a): intrigues and insights. Curr Opin Lipidol. 1999;10:225–36.PubMedCrossRefGoogle Scholar
  28. 28.
    Lindahl G, Gersdorf E, Menzel HJ, et al. The gene for the Lp(a)-specific glycoprotein is closely linked to the gene for plasminogen on chromosome 6. Hum Genet. 1989;81:149–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Kraft HG, Lingenhel A, Kochl S, et al. Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler Thromb Vasc Biol. 1996;16:713–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Marcovina SM, Albers JJ, DR Jr J, et al. Lipoprotein[a] concentrations and apolipoprotein[a] phenotypes in Caucasians and African Americans. The CARDIA study. Arterioscler Thromb. 1993;13:1037–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Marcovina SM, Albers JJ, Wijsman E, et al. Differences in Lp[a] concentrations and apo[a] polymorphs between black and white Americans. J Lipid Res. 1996;37:2569–85.PubMedGoogle Scholar
  32. 32.
    Kostner GM. Lipoprotein(a): Metabolismus und Beeinflussung des Plasmaspiegels. J Kardiol. 2002;9:321–4.Google Scholar
  33. 33.
    Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31:2844–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Genest Jr JJ, Martin-Munley SS, McNamara JR, et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation. 1992;85:2025–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Kamstrup PR. Lipoprotein(a) and ischemic heart disease – a causal association? A review. Atherosclerosis. 2010;211:15–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Davidson MH. Reducing residual risk for patients on statin therapy: the potential role of combination therapy. Am J Cardiol. 2005;7:3K–13.CrossRefGoogle Scholar
  37. 37.
    Fruchart JC, Sacks FM, Hermans MP, Residual Risk Reduction Initiative (R3I). Residual Risk Reduction Initiative (R3I), et al. The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in dyslipidaemic patient. Diab Vasc Dis Res. 2008;5:319–35.PubMedCrossRefGoogle Scholar
  38. 38.
    Ballantyne CM, Andrews TC, Hsia JA, Kramer JH, Shear C, ACCESS Study Group. Atorvastatin Comparative Cholesterol Efficacy and Safety Study Correlation of non-high-density lipoprotein cholesterol with apolipoprotein B: effect of 5 hydroxymethylglutaryl coenzyme A reductase inhibitors on non-high-density lipoprotein cholesterol levels. Am J Cardiol. 2001;88:265–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Kastelein JJ, van der Steeg WA, Holme I, et al. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation. 2008;117:3002–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Graaf D, Couture P, Sniderman A. A diagnostic algorithm for the atherogenic apolipoprotein B dyslipoproteinaemias. Nat Clin Pract Endocrinol Metab. 2008;4:608–18.PubMedCrossRefGoogle Scholar
  41. 41.
    Reiner Ž, Catapano AL, De Backer G, et al. ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2011;32:1769–818.PubMedCrossRefGoogle Scholar
  42. 42.
    Robinson JG, Goldberg AC. Treatment of adults with familial hypercholesterolemia and evidence for treatment: recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5:S18–29.PubMedCrossRefGoogle Scholar
  43. 43.
    Wiviott SD, Cannon CP, Morrow DA, Ray KK, Pfeffer MA, Braunwald E. Can low-density lipoprotein be too low? The safety and efficacy of achieving very low low-density lipoprotein with intensive statin therapy: a PROVE IT-TIMI 22 substudy. J Am Coll Cardiol. 2005;46:1411–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Schwartz GG, Olsson AG, Ezekowitz MD, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA. 2001;285:1711–8.PubMedCrossRefGoogle Scholar
  45. 45.
    de Lemos JA, Blazing MA, Wiviott SD, et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA. 2004;292:1307–16.PubMedCrossRefGoogle Scholar
  46. 46.
    Jones P, Kafonek S, Laurora I, Hunninghake D. Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the curves study). Am J Cardiol. 1998;81:582–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–39.PubMedCrossRefGoogle Scholar
  48. 48.
    Hsia J, MacFadyen JG, Monyak J, Ridker PM. Cardiovascular event reduction and adverse events among subjects attaining lowdensity lipoprotein cholesterol <50 mg/dl with rosuvastatin. The JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). J Am Coll Cardiol. 2011;57:1666–75.PubMedCrossRefGoogle Scholar
  49. 49.
    Harper CR, Jacobson TA. The broad spectrum of statin myopathy: from myalgia to rhabdomyolysis. Curr Opin Lipidol. 2007;18:401–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Golomb BA, Evans MA. Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs. 2008;8:373–418.PubMedCrossRefGoogle Scholar
  51. 51.
    Artenstein AW, Opal SM. Proprotein convertases in health and disease. N Engl J Med. 2011;365:2507–18.PubMedCrossRefGoogle Scholar
  52. 52.
    Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade. J Lipid Res. 2012;53:2515–24.PubMedCrossRefGoogle Scholar
  53. 53.
    Rhainds D, Arsenault BJ, Tardif JC. PCSK9 inhibition and LDL cholesterol lowering: the biology of an attractive therapeutic target and critical review of the latest clinical trials. Clin Lipidol. 2012;7:621–40.CrossRefGoogle Scholar
  54. 54.
    Catapano AL, Papadopoulos N. The safety of therapeutic monoclonal antibodies: implications for cardiovascular disease and targeting the PCSK9 pathway. Atherosclerosis. 2013;228:18–28.PubMedCrossRefGoogle Scholar
  55. 55.
    Dowdall M. Highlighting the future potential of PCSK9-targeted therapeutics. Clin Lipidol. 2012;7:599–601.CrossRefGoogle Scholar
  56. 56.
    Tavori H, Fazio S, Linton MF. PCSK9, a novel target for lowering LDL cholesterol: promise and progress. Clin Lipidol. 2012;7:611–5.CrossRefGoogle Scholar
  57. 57.
    Dias CS, Shaywitz AJ, Wasserman SM, et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2011;60:1888–98.CrossRefGoogle Scholar
  58. 58.
    Giugliano RP, Desai NR, Kohli P, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380:2007–17.PubMedCrossRefGoogle Scholar
  59. 59.
    Koren MJ, Scott R, Kim JB, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012;380:1995–2006.PubMedCrossRefGoogle Scholar
  60. 60.
    Sullivan D, Olsson AG, Scott R, et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA. 2012;308:2497–506.PubMedCrossRefGoogle Scholar
  61. 61.
    Raal F, Scott R, Somaratne R, et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL-C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation. 2012;126:2408–17.PubMedCrossRefGoogle Scholar
  62. 62.
    Stein EA, Mellis S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med. 2012;366:1108–18.PubMedCrossRefGoogle Scholar
  63. 63.
    McKenney J, Koren M, Kereiakes D, Hanotin C, Ferrand A, Stein A. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59:2344–53.PubMedCrossRefGoogle Scholar
  64. 64.
    Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med. 2012;367:1891–900.PubMedCrossRefGoogle Scholar
  65. 65.
    Stein EA, Gipe D, Bergeron J, et al. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce lowdensity lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet. 2012;380:29–36.PubMedCrossRefGoogle Scholar
  66. 66.
    Crooke RM, Baker BF, Wedel M. Cardiovascular therapeutic applications in antisense drug technology; principles, strategies and applications. 2nd ed. Boca Raton: CRC Press; 2007. p. 601–39.CrossRefGoogle Scholar
  67. 67.
    Kastelein JJ, Wedel MK, Baker BF, et al. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by shortterm administration of an antisense inhibitor of apolipoprotein B. Circulation. 2006;114:1729–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Akdim F, Visser ME, Tribble DL, et al. Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia. Am J Cardiol. 2010;5:1413–9.CrossRefGoogle Scholar
  69. 69.
    Visser ME, Akdim F, Tribble DL, et al. Effect of apolipoprotein-B synthesis inhibition on liver triglyceride content in patients with familial hypercholesterolemia. J Lipid Res. 2010;51:1057–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Raal FJ, Santos RD, Blom DJ, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006.PubMedCrossRefGoogle Scholar
  71. 71.
    Akdim F, Stroes ES, Sijbrands EJ, et al. Efficacy and safety of mipomersen, an antisense inhibitor of apolipoprotein B, in hypercholesterolemic subjects receiving stable statin therapy. J Am Coll Cardiol. 2010;55:1611–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Akdim F, Tribble DL, Flaim JD, et al. Efficacy of apolipoprotein B synthesis inhibition in subjects with mild-to-moderate hyperlipidaemia. Eur Heart J. 2011;32:2650–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Visser ME, Wagener G, Baker BF, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur Heart J. 2012;33:1142–9.PubMedCrossRefGoogle Scholar
  74. 74.
    McGowan MP, Tardif JC, Ceska R, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One. 2012;7:49006.CrossRefGoogle Scholar
  75. 75.
    Stein EA, Dufour R, Gagne C, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126:2283–92.PubMedCrossRefGoogle Scholar
  76. 76.
    Yu RZ, Geary RS, Flaim JD, et al. Lack of pharmacokinetic interaction of mipomersen sodium (ISIS 301012), a 2′-O-methoxyethyl modified antisense oligonucleotide targeting apolipoprotein B-100 messenger RNA, with simvastatin and ezetimibe. Clin Pharmacokinet. 2009;48:39–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res. 2003;44:22–32.PubMedCrossRefGoogle Scholar
  78. 78.
    Hussain MM, Bakillah A. New approaches to target microsomal triglyceride transfer protein. Curr Opin Lipidol. 2008;19:572–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Cuchel M, Bloedon LT, Szapary PO, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356:148–56.PubMedCrossRefGoogle Scholar
  80. 80.
    Samaha FF, McKenney J, Bloedon LT, Sasiela WJ, Rader DJ. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2008;5:497–505.PubMedCrossRefGoogle Scholar
  81. 81.
    Cuchel M, Meagher EA, du Toit Theron H, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381:40–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Chandler CE, Wilder DE, Pettini JL, et al. CP-346086: an MTP inhibitor that lowers plasma cholesterol and triglycerides in experimental animals and in humans. J Lipid Res. 2003;44:1887–901.PubMedCrossRefGoogle Scholar
  83. 83.
    Mera Y, Odani N, Kawai T, et al. Pharmacological characterization of diethyl-2-({3-dimethylcarbamoyl-4-[(4′-trifluoromethylbiphenyl-2-carbonyl) amino]phenyl}acetyloxymethyl)-2-phenylmalonate (JTT-130), an intestine-specific inhibitor of microsomal triglyceride transfer protein. J Pharmacol Exp Ther. 2011;336:321–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Dunbar RL, Bloedon LT, Gadi R, et al. Impact of high doses of the mtp-inhibitor, AEGR-733, on the single dose pharmacokinetics of atorvastatin and rosuvastatin. 2009. Retrieved May 30, 2013, 2011, from: http://www.aegerion.com/Collateral/Documents/English-US/ISA_2009_-_PK_high_dose_lomitapide_with_statin.pdf.
  85. 85.
    Duffy D, Bloedon LT, Dunbar RL, et al. Impact of the MTP Inhibitor AEGR-733 on Pharmacokinetics of Statins. 2007. Retrieved May 30, 2013, 2011, from: http://www.aegerion.com/Collateral/Documents/English-US/DALM_2007-_effects_of_lomitapide_on_PK_with_statins.pdf.
  86. 86.
    Dunbar RL, Bloedon LT, Duffy D, et al. Impact of the MTP Inhibitor AEGR-733 on pharmacokinetics of fenofibrate. 2007. Retrieved May 30, 2013, 2011, from: http://www.aegerion.com/Collateral/Documents/English-US/DALM_2007_-_effects_of_lomitapide_on_PK_with_fenofibrate.pdf.
  87. 87.
    Dunbar RL, Bloedon LT, Gadi R, et al. Impact of high doses of the MTP-inhibitor lomitapide (AEGR-733) on the single-dose pharmacokinetics of extended-release niacin. 2009. Retrieved May 30, 2013, 2011, from: http://www.aegerion.com/Collateral/Documents/English-US/ISA_2009_-_PK_high_dose_lomitapide_with_Niacin.pdf.
  88. 88.
    Zamel R, Khan R, Pollex RL, Hegele RA. Abetalipoproteinemia: two case reports and literature review. Orphanet J Rare Dis. 2008;3:19.PubMedCrossRefGoogle Scholar
  89. 89.
    Thompson GR. The evidence-base for the efficacy of lipoprotein apheresis in combating cardiovascular disease. Atheroscler Suppl. 2013 Jan;14(1):67–70.Google Scholar
  90. 90.
    Stefanutti C, Julius U. Lipoprotein apheresis: state of the art and novelties. Atheroscler Suppl. 2013;14:19–27.PubMedCrossRefGoogle Scholar
  91. 91.
    Herbert B, Patel D, Waddington SN, et al. Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler Thromb Vasc Biol. 2010;30:1333–9.Google Scholar
  92. 92.
    Ouguerrram K et al. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler Thromb Vasc Biol. 2004;8:1448–53.CrossRefGoogle Scholar
  93. 93.
    Le May C, Kourimate S, Langhi C, et al. PCSK9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29:684–90.PubMedCrossRefGoogle Scholar
  94. 94.
    Rashid S, Curtis DE, Garuti R, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A. 2005;102:5374–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Hoover-Plow J, Huang M. Lipoprotein(a) metabolism: potential sites for therapeutic targets. Metabolism: Clinical and Experimental. 2013;62(4):479–91. +nordesgaard.CrossRefGoogle Scholar
  96. 96.
    Rader DJ, Cain W, Ikewaki K, et al. The inverse association of plasma lipoprotein(a) concentrations with apolipoprotein(a) isoform size is not due to differences in Lp(a) catabolism but to differences in production rate. J Clin Invest. 1994;93:2758–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Koschinsky ML, Marcovina SM. Structure-function relationships in apolipoprotein(a): insights into lipoprotein(a) assembly and pathogenicity. Curr Opin Lipidol. 2004;15:167–74.PubMedCrossRefGoogle Scholar
  98. 98.
    Lippi G, Targher G. Optimal therapy for reduction of lipoprotein(a). J Clin Pharm Ther. 2012;37:1–3.PubMedCrossRefGoogle Scholar
  99. 99.
    Marchesini G, Marzocchi R, Agostini F, Bugianesi E. Nonalcoholic fatty liver disease and the metabolic syndrome. Curr Opin Lipidol. 2005;16:421–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Biotechnology Research CenterMashhad University of Medical SciencesMashhadIran
  2. 2.Department of Modern Sciences and TechnologiesMashhad University of Medical SciencesMashhadIran
  3. 3.Metabolic Research Centre and Lipid Disorders Clinic, Royal Perth Hospital, School of Medicine and PharmacologyUniversity of Western AustraliaPerthAustralia

Personalised recommendations