Skip to main content
Log in

Role of MicroRNAs in Cardiac Remodeling and Heart Failure

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are endogenous, short (~22 nucleotide), evolutionarily conserved, non-coding RNAs that regulate gene expression at the post-transcriptional level. Recent evidence suggests that miRNAs are differentially expressed in the failing myocardium and play an important role in progression of heart failure by targeting genes that govern diverse functions in cardiac remodeling process including myocyte hypertrophy, excitation-contraction coupling, increased myocyte loss, and myocardial fibrosis. In addition to their role in adverse cardiac remodeling, miRNAs hold promise as biomarkers of disease progression in heart failure given their presence in circulation and enhanced stability. Further development of miR-based therapeutics may allow for modulation of cardiac and/or systemic levels of specific miRNAs in patients with heart failure . Here, we summarize current knowledge of miRNAs in relation to their role in regulating various aspects of the cardiac remodeling process and discuss their potential use as biomarkers and/or therapeutic targets in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111:2837–49.

    Article  PubMed  Google Scholar 

  2. Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13:486–91.

    Article  PubMed  CAS  Google Scholar 

  3. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129:303–17.

    Article  PubMed  CAS  Google Scholar 

  4. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316:575–9.

    Article  PubMed  Google Scholar 

  5. van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 2006;103:18255–60.

    Article  PubMed  Google Scholar 

  6. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214–20.

    Article  PubMed  CAS  Google Scholar 

  7. Xiao J, Luo X, Lin H, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem. 2007;282:12363–7.

    Article  PubMed  CAS  Google Scholar 

  8. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 2007;100:416–24.

    Article  PubMed  CAS  Google Scholar 

  9. Cheng YH, Ji RR, Yue JM, et al. MicroRNAs are aberrantly expressed in hypertrophic heart - Do they play a role in cardiac hypertrophy? Am J Pathol. 2007;170:1831–40.

    Article  PubMed  CAS  Google Scholar 

  10. Tatsuguchi M, Seok HY, Callis TE, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2007;42:1137–41.

    Article  PubMed  CAS  Google Scholar 

  11. van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 2008;105:13027–32.

    Article  PubMed  Google Scholar 

  12. Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009;82:21–9.

    Article  PubMed  CAS  Google Scholar 

  13. Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613–18.

    Article  PubMed  CAS  Google Scholar 

  14. Matkovich SJ, Van Booven DJ, Youker KA, et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119:1263–71.

    Article  PubMed  CAS  Google Scholar 

  15. Naga Prasad SV, Duan ZH, Gupta MK, et al. A unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. J Biol Chem 2009

  16. Sucharov C, Bristow MR, Port JD. miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol. 2008;45:185–92.

    Article  PubMed  CAS  Google Scholar 

  17. Ikeda S, Kong SW, Lu J, et al. Altered microRNA expression in human heart disease. Physiol Genomics. 2007;31:367–73.

    Article  PubMed  CAS  Google Scholar 

  18. Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart - A clue to fetal gene reprogramming in heart failure. Circulation. 2007;116:258–67.

    Article  PubMed  CAS  Google Scholar 

  19. Morin RD, O’Connor MD, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18:610–21.

    Article  PubMed  CAS  Google Scholar 

  20. Willenbrock H, Salomon J, Sokilde R, et al. Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA. 2009;15:2028–34.

    Article  PubMed  CAS  Google Scholar 

  21. Dash R, Kadambi V, Schmidt AG, et al. Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Circulation. 2001;103:889–96.

    PubMed  CAS  Google Scholar 

  22. Urabe Y, Hamada Y, Spinale FG, et al. Cardiocyte contractile performance in experimental biventricular volume-overload hypertrophy. Am J Physiol. 1993;264:H1615–23.

    PubMed  CAS  Google Scholar 

  23. Anand IS, Liu D, Chugh SS, et al. Isolated myocyte contractile function is normal in postinfarct remodeled rat heart with systolic dysfunction. Circulation. 1997;96:3974–84.

    PubMed  CAS  Google Scholar 

  24. Ikeda S, He A, Kong SW, et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009;29:2193–204.

    Article  PubMed  CAS  Google Scholar 

  25. Elia L, Contu R, Quintavalle M, et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009;120:2377–85.

    Article  PubMed  CAS  Google Scholar 

  26. Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22:3242–54.

    Article  PubMed  CAS  Google Scholar 

  27. Matkovich SJ, Wang W, Tu Y, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res. 2010;106:166–75.

    Article  PubMed  CAS  Google Scholar 

  28. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13:39–53.

    Article  PubMed  CAS  Google Scholar 

  29. Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.

    Article  PubMed  CAS  Google Scholar 

  30. Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci USA. 2009;106:12103–8.

    Article  PubMed  CAS  Google Scholar 

  31. Wang K, Long B, Zhou J, Li PF. miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. J Biol Chem. 2010;285:11903–12.

    Article  PubMed  CAS  Google Scholar 

  32. Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA. Myosin heavy chain gene expression in human heart failure. J Clin Invest. 1997;100:2362–70.

    Article  PubMed  CAS  Google Scholar 

  33. Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119:2772–86.

    Article  PubMed  CAS  Google Scholar 

  34. Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 2009;47:5–14.

    Article  PubMed  CAS  Google Scholar 

  35. Xu C, Lu Y, Pan Z, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007;120:3045–52.

    Article  PubMed  CAS  Google Scholar 

  36. Rane S, He M, Sayed D, et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104:879–86.

    Article  PubMed  CAS  Google Scholar 

  37. Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009;119:2357–66.

    Article  PubMed  CAS  Google Scholar 

  38. Divakaran V, Adrogue J, Ishiyama M, et al. Adaptive and maladptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading. Circ Heart Fail. 2009;2:633–42.

    Article  PubMed  CAS  Google Scholar 

  39. Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009;104:170–8, p. 6

    Google Scholar 

  40. Topkara VK, Mann DL. Clinical applications of miRNAs in cardiac remodeling and heart failure. Personalized Med. 2010;7:531–48.

    Article  CAS  Google Scholar 

  41. Divakaran V, Mann DL. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 2008;103:1072–83.

    Article  PubMed  CAS  Google Scholar 

  42. Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS ONE. 2008;3:e3148.

    Article  PubMed  Google Scholar 

  43. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105:10513–18.

    Article  PubMed  CAS  Google Scholar 

  44. Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106:1035–9.

    Article  PubMed  CAS  Google Scholar 

  45. Corsten MF, Dennert R, Jochems S, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3:499–506.

    Article  PubMed  Google Scholar 

  46. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  Google Scholar 

  47. Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87–98.

    Article  PubMed  CAS  Google Scholar 

  48. Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.

    Article  PubMed  CAS  Google Scholar 

  49. Suckau L, Fechner H, Chemaly E, et al. Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation. 2009;119:1241–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest disclosure

This research was supported by research funds from the N.I.H. (RO1 HL58081, HL-73017-0, HL089543-01 and T32HL007081). D.L.M. is a consultant for Miragen (Boulder, Colo.). The authors have no other relevant affiliations or financial involvement in any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Mann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topkara, V.K., Mann, D.L. Role of MicroRNAs in Cardiac Remodeling and Heart Failure. Cardiovasc Drugs Ther 25, 171–182 (2011). https://doi.org/10.1007/s10557-011-6289-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-011-6289-5

Key words

Navigation