Advertisement

Cardiovascular Drugs and Therapy

, Volume 25, Issue 2, pp 133–138 | Cite as

Chronic Istaroxime Improves Cardiac Function and Heart Rate Variability in Cardiomyopathic Hamsters

  • Pietro Lo Giudice
  • Giovan Giuseppe Mattera
  • Jean-Pierre Gagnol
  • Franco Borsini
Article
  • 140 Downloads

Abstract

Purpose

Istaroxime is a new luso-inotropic compound. It exerts inotropic action by reducing Na+/K+-ATPase activity, and simultaneously it stimulates sarcoplasmic reticulum Ca2+-ATPase function, thus also inducing lusitropic action. The aim of present study is to assess the effect of chronic istaroxime treatment on cardiac function and heart rate variability in Bio TO.2 Syrian hamster model of progressive heart failure.

Methods

Bio TO.2 hamsters were daily treated, from 12 to 28 weeks of age, with 30 mg/kg/day oral istaroxime. Age-matched Bio TO.2 and Bio F1B hamsters were treated with vehicle and used as diseased and healthy controls. At the end of treatment, hearts function and autonomic cardiac control were evaluated.

Results

Hearts from vehicle-treated Bio TO.2 when compared with hearts from Bio F1B showed higher heart/body weight ratio, and lower left ventricular systolic pressure (LVSP), positive and negative derivative of LV pressure (dP/dT), coronary flow rate (CFR). Hearts from istaroxime-treated when compared with those of vehicle-treated hamsters, showed the reduction of heart/body weight ratio, and the increase of LVSP, of both positive and negative dP/dT, and of CFR. Autonomic cardiac control, evaluated by HRV analysis, indicated in vehicle-treated Bio TO.2 hamsters, when compared to healthy, a shift towards increased sympathetic and decreased parasympathetic activities. Istaroxime-treatment preserved parasympathetic activity.

Conclusions

Chronic istaroxime improves cardiac function and heart rate variability in Bio TO.2 Syrian hamster model of progressive heart failure.

Key words

Istaroxime Na+/K+-ATPase Sarcoplasmic reticulum Ca2+-ATPase Bio TO.2 hamsters Heart failure Heart rate variability 

Notes

Acknowledgements

We gratefully acknowledge the technical assistance from Giuseppina Magni and Augusta Bellucci

References

  1. 1.
    Shin DD, Brandimarte F, De Luca L, et al. Review of current and investigational pharmacologic agents for acute heart failure syndromes. Am J Cardiol. 2007;99:4A–23A.PubMedCrossRefGoogle Scholar
  2. 2.
    De Luca L, Mebazaa A, Filippatos G, et al. Overview of emerging pharmacologic agents for acute heart failure syndromes. Eur J Heart Fail. 2008;10:201–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Cuffe MS, Califf RM, Adams Jr KF, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA. 2002;287:1541–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Rocchetti M, Besana A, Mostacciuolo G, Micheletti R, Ferrari P, Sarkozi S, et al. Modulation of sarcoplasmic reticulum function by Na+/K+ pump inhibitors with different toxicity: digoxin and PST2744 [(E, Z)-3-((2-aminoethoxy)imino)androstane-6, 17-dione hydrochloride]. J Pharmacol Exp Ther. 2005;313:207–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Rocchetti M, Alemanni M, Mostacciuolo G, Barassi P, Altomare C, Chisci R, et al. Modulation of sarcoplasmic reticulum function by PST2744 [Istaroxime; (E, Z)-3-((2-Aminoethoxy)imino) Androstane-6, 17-dione Hydrochloride)] in a pressure-overload heart failure model. J Pharmacol Exp Ther. 2008;326:957–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Micheletti R, Mattera GG, Rocchetti M, Schiavone A, Loi MF, Zaza A, et al. Pharmacological profile of the novel inotropic agent (E, Z)-3-((2-aminoethoxy)imino)androstane-6, 17-dione hydrochloride (PST2744). J Pharmacol Exp Ther. 2002;303:592–600.PubMedCrossRefGoogle Scholar
  7. 7.
    Mattera GG, Lo Giudice P, Loi FM, Vanoli E, Gagnol JP, Borsini F, et al. Istaroxime: a safe new lusi-inotropic agent for heart failure. Am J Cardiol. 2007;99:33A–40A.PubMedCrossRefGoogle Scholar
  8. 8.
    Sabbah HN, Imai M, Cowart D, Amato A, Carminati P, Gheorghiade M. Hemodynamic properties of a new-generation positive luso-inotropic agent for the acute treatment of advanced heart failure. Am J Cardiol. 2007;99:41A–6A.PubMedCrossRefGoogle Scholar
  9. 9.
    Ghali JK, Smith WB, Torre-Amione G, Haynos W, Rayburn BK, Amato A, et al. A phase 1–2 dose-escalating study evaluating the safety and tolerability of istaroxime and specific effects on electrocardiographic and hemodynamic parameters in patients with chronic heart failure with reduced systolic function. Am J Cardiol. 2007;99:47A–56A.PubMedCrossRefGoogle Scholar
  10. 10.
    Panchal BC, Trippodo NC. Systemic and regional haemodynamics in conscious BIO T0-2 cardiomyopathic hamsters. Cardiovasc Res. 1993;27:2264–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Goineau S, Pape D, Guillo P, Ramee MP, Bellissant E. Hemodynamic and histomorphometric characteristics of dilated cardiomyopathy of Syrian hamsters (Bio TO-2 strain). Can J Physiol Pharmacol. 2001;79:329–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Nishizawa T, Iwase M, Kanazawa H, Ichihara S, Ichihara G, Nagata K, et al. Serial alterations of β-adrenergic signaling in dilated cardiomyopathic hamsters: possible role of myocardial oxidative stress. Circ J. 2004;68:1051–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Nishimura S, Yamashita H, Katoh M, Yamada KP, Sunagawa K, Saeki Y, et al. Contractile dysfunction of cardiomyopathic hamster myocytes is pronounced under high load conditions. J Mol Cell Cardiol. 2005;39:231–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Lo Giudice P, Gagnol JP, Bellucci A, Buffone G, Careddu A, Magni G, et al. Autonomic nervous system activity imbalance in cardiomyopathic hamster. J Cardiovasc Pharmacol. 2000;36:369–75.CrossRefGoogle Scholar
  15. 15.
    VanDongen CG, Kenouche A, Banville B, Kale A, Bhagavan H, Amende I, et al. Rapid screen for heart failure autonomic nervous system imbalance in cardiomyopathic BIO TO-2 hamsters. FASEB J. 2007;21:956.2.Google Scholar
  16. 16.
    Binkley P, Nunziata E, Haas G, Nelson S, Cody R. Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure demonstration in human subjects and verification in a paced canine model of ventricular failure. J Am Coll Cardiol. 1991;18:464–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Szabo BM, van Veldhuisen DJ, Brouwer J, Haaksma J, Lie KI. Relation between severity of disease and impairment of heart rate variability parameters in patients with chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1995;76:713–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Stefenelli T, Bergler-Klein J, Globits S, Pacher R, Glogar D. Heart rate behavior at different stages of congestive heart failure. Eur Heart J. 1992;13:902–7.PubMedGoogle Scholar
  19. 19.
    Yamada S, Ohkura T, Yamadera T, Ito O, Kimura R, Nozawa Y, et al. Abnormalities in plasma catecholamines, and myocardial adrenoreceptors in cardiomyopathic BIO 53.58 Syrian hamsters and improvement by metoprolol treatment. J Pharmacol Exp Ther. 1997;283:1389–95.PubMedGoogle Scholar
  20. 20.
    Wilkinson M, Horackova M, Giles A. Reduction of ventricular M2 muscarinic receptors in cardiomyopathic hamster (CHF 147) at the necrotic stage of the myopathy. Pflugers Arch. 1994;426:516–23.PubMedCrossRefGoogle Scholar
  21. 21.
    La Rovere MT, Bigger Jr JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI Investigators. Lancet. 1998;351:478–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Malave HA, Taylor AA, Nattama J, Deswal A, Mann DL. Circulating levels of tumor necrosis factor correlate with indexes of depressed heart rate variability: a study in patients with mild-to-moderate heart failure. Chest. 2003;123:716–24.PubMedCrossRefGoogle Scholar
  23. 23.
    Ueyama T, Ohkusa T, Hisamatsu Y, Nakamura Y, Yamamoto T, Yano M, et al. Alterations in cardiac SR Ca2+ -release channels during development of heart failure in cardiomyopathic hamsters. Am J Physiol. 1998;274:H1–7.PubMedGoogle Scholar
  24. 24.
    Panagia V, Singh JN, Anand-Srivastava MB, Pierce GN, Jasmin G, Dhalla NS. Sarcolemmal alterations during the development of genetically determined cardiomyopathy. Cardiovasc Res. 1984;18:567–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Jasmin G, Proschek L. Calcium and myocardial cell injury: an appraisal in the cardiomyopathic hamster. Can J Physiol Pharmacol. 1983;62:891–8.CrossRefGoogle Scholar
  26. 26.
    Hano O, Lakatta EG. Diminished tolerance of prehypertrophic cardiomyopathic Syrian hamster hearts to Ca2+ stresses. Circ Res. 1991;69:123–33.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pietro Lo Giudice
    • 1
  • Giovan Giuseppe Mattera
    • 1
  • Jean-Pierre Gagnol
    • 2
  • Franco Borsini
    • 1
  1. 1.Research and Development, Pharmacology DepartmentSigma-Tau Industrie Farmaceutiche Riunite S.p.A.PomeziaItaly
  2. 2.University of Montpellier 1 and CNRS UMR5232MontpellierFrance

Personalised recommendations