Skip to main content
Log in

Dipropionylcysteine Ethyl Ester Compensates for Loss of Citric Acid Cycle Intermediates During Post Ischemia Reperfusion in the Pig Heart

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

During reperfusion, following myocardial ischemia, uncompensated loss of citric acid cycle (CAC) intermediates may impair CAC flux and energy transduction. Propionate has an anaplerotic effect when converted to the CAC intermediate succinyl-CoA, and may improve contractile recovery during reperfusion. Antioxidant therapy with N-acetylcysteine decreases reperfusion injury. To synergize the antioxidant effects of cysteine with the anaplerotic effects of propionate, we synthesized a novel bi-functional compound, N,S-dipropionyl cysteine ethyl ester (DPNCE) and tested its anaplerotic and anti-oxidative capacity in anesthetized pigs.

Methods

Ischemia was induced by a 70% reduction in left anterior descending coronary artery flow for one hour, followed by 1 h of reperfusion. After 30 min of ischemia and throughout reperfusion animals were treated with saline or intravenous DPNCE (1.5 mg·kg−1·min−1, n = 8/group). Arterial concentrations and myocardial propionate, cysteine, free fatty acids, glucose and lactate uptakes, cardiac mechanical functions, myocardial content of CAC intermediates and oxidative stress were assessed.

Results

Ischemia resulted in reduction in myocardial tissue concentration of CAC intermediates. DPNCE treatment elevated arterial propionate and cysteine concentrations and myocardial propionate uptake, and increased myocardial concentrations of citrate, succinate, fumarate, and malate compared to saline treated animals. DPNCE treatment did not affect blood pressure or myocardial contractile function, but increased arterial free fatty acid concentration and myocardial fatty acid uptake. Arterial cysteine concentration was elevated by DPNCE, but there was negligible myocardial cysteine uptake, and no change in markers of oxidative stress.

Conclusion

DPNCE elevated arterial cysteine and propionate, and increased myocardial concentration of CAC intermediates, but did not affect mechanical function or oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004;61:461–70.

    Article  CAS  PubMed  Google Scholar 

  2. Brunengraber H, Roe CR. Anaplerotic molecules: current and future. JIMD 2006;29:327–31.

    Google Scholar 

  3. Taegtmeyer H. Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles. Heart Circ Res. 1978;43:808–15.

    CAS  Google Scholar 

  4. Cohen DM, Bergman RN. Improved estimation of anaplerosis in heart using 13C NMR. Am J Physiol. 1997;273:E1228–42.

    CAS  PubMed  Google Scholar 

  5. Russell RR 3rd, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest. 1991;87:384–90.

    Article  CAS  PubMed  Google Scholar 

  6. Mallet RT, Sun J, Knott EM, Sharma AB, Olivencia-Yurvati AH. Metabolic cardioprotection by pyruvate: recent progress. Exp Biol Med. 2005;230:435–43.

    CAS  Google Scholar 

  7. Pound KM, Sorokina N, Ballal K, et al. Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content. attenuating upregulated anaplerosis in hypertrophy. Circ Res. 2009;104:805–12.

    Article  CAS  PubMed  Google Scholar 

  8. Stanley WC, Kivilo KM, Panchal AR, et al. Post-ischemic treatment with dipyruvyl-acetyl-glycerol decreases myocardial infarct size in the pig. Cardiovasc Drugs Ther. 2003;17:209–16.

    Article  CAS  PubMed  Google Scholar 

  9. Kasumov T, Cendrowski AV, David F, Jobbins KA, Anderson VE, Brunengraber H. Mass isotopomer study of anaplerosis from propionate in the perfused rat heart. Arch Biochem Biophys. 2007;463:110–7.

    Article  CAS  PubMed  Google Scholar 

  10. Russell RR 3rd, Mommessin JI, Taegtmeyer H. Propionyl-L-carnitine-mediated improvement in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol. 1995;268:H441–7.

    CAS  PubMed  Google Scholar 

  11. Carrea FP, Lesnefsky EJ, Repine JE, Shikes RH, Horwitz LD. Reduction of canine myocardial infarct size by a diffusible reactive oxygen metabolite scavenger. Efficacy of dimethylthiourea given at the onset of reperfusion. Circ Res. 1991;68:1652–9.

    CAS  PubMed  Google Scholar 

  12. Werns SW, Shea MJ, Lucchesi BR. Free radicals and myocardial injury: pharmacologic implications. Circulation 1986;74:1–5.

    CAS  PubMed  Google Scholar 

  13. Marchetti G, Lodola E, Licciardello L, Colombo A. Use of N-acetylcysteine in the management of coronary artery diseases. Cardiologia 1999;44:633–7.

    CAS  PubMed  Google Scholar 

  14. Sochman J. N-acetylcysteine in acute cardiology: 10 years later: what do we know and what would we like to know?! J Am Coll Cardiol. 2002;39:1422–8.

    Article  CAS  PubMed  Google Scholar 

  15. Reszko AE, Kasumov T, Comte B, et al. Assay of the concentration and 13C-isotopic enrichment of malonyl-coenzyme A by gas chromatography-mass spectrometry. Anal Biochem. 2001;298:69–75.

    Article  CAS  PubMed  Google Scholar 

  16. Chandler MP, Huang H, McElfresh TA, Stanley WC. Increased nonoxidative glycolysis despite continued fatty acid uptake during demand-induced myocardial ischemia. Am J Physiol Heart Circ Physiol. 2002;282:H1871–8.

    CAS  PubMed  Google Scholar 

  17. Okere IC, McElfresh TA, Brunengraber DZ, et al. Differential effects of heptanoate and hexanoate on myocardial citric acid cycle intermediates following ischemia-reperfusion. J Appl Physiol. 2006;100:76–82.

    Article  CAS  PubMed  Google Scholar 

  18. Sharma N, Okere IC, Brunengraber DZ, et al. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. J Physiol. 2005;562:593–603.

    Article  CAS  PubMed  Google Scholar 

  19. Okere IC, Young ME, McElfresh TA, et al. Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension. Hypertension 2006;48:1116–23.

    Article  CAS  PubMed  Google Scholar 

  20. Hachey DL, Patterson BW, Reeds PJ, Elsas LJ. Isotopic determination of organic keto acid pentafluorobenzyl esters in biological fluids by negative chemical ionization gas chromatography/mass spectrometry. Anal Chem. 1991;63:919–23.

    Article  CAS  PubMed  Google Scholar 

  21. Huang ZH, Wang J, Gage DA, Watson JT, Sweeley CC, Husek P. Characterization of N-ethoxycarbonyl ethyl esters of amino acids by mass spectrometry. J Chromatogr. 1993;635:271–81.

    Article  CAS  PubMed  Google Scholar 

  22. Kombu RS, Zhang G, Abbas R, et al. Dynamics of glutathione and ophthalmate traced with 2H-enriched body water in rats and humans. Am J Physiol Endocrinol Metab. 2009;297:E260–9.

    Article  CAS  PubMed  Google Scholar 

  23. Martini WZ, Stanley WC, Huang H, Rosiers CD, Hoppel CL, Brunengraber H. Quantitative assessment of anaplerosis from propionate in pig heart in vivo. Am J Physiol Endocrinol Metabol. 2003;284:E351–6.

    CAS  Google Scholar 

  24. Jahoor F, Wykes LJ, Reeds PJ, Henry JF, del Rosario MP, Frazer ME. Protein-deficient pigs cannot maintain reduced glutathione homeostasis when subjected to the stress of inflammation. J Nutr. 1995;125:1462–72.

    CAS  PubMed  Google Scholar 

  25. Forman MB, Puett DW, Cates CU, et al. Glutathione redox pathway and reperfusion injury. Effect of N-acetylcysteine on infarct size and ventricular function. Circulation 1988;78:202–13.

    CAS  PubMed  Google Scholar 

  26. Di Lisa F, Menabáo R, Barbato R, Siliprandi N. Contrasting effects of propionate and propionyl-L-carnitine on energy-linked processes in ischemic hearts. Am J Physiol. 1994;267:H455–61.

    PubMed  Google Scholar 

  27. Liedtke AJ, Hacker T, Renstrom B, Nellis SH. Anaplerotic effects of propionate on oxidations of acetate and long-chain fatty acids. Am J Physiol. 1996;270:H2197–203.

    CAS  PubMed  Google Scholar 

  28. Reszko AE, Kasumov T, Pierce BA, et al. Assessing the reversibility of the anaplerotic reactions of the propionyl-CoA pathway in heart and liver. J Biol Chem. 2003;278:34959–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (DK069752 and HL074237) and the American Heart Association Ohio Chapter (0465221B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takhar Kasumov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasumov, T., Sharma, N., Huang, H. et al. Dipropionylcysteine Ethyl Ester Compensates for Loss of Citric Acid Cycle Intermediates During Post Ischemia Reperfusion in the Pig Heart. Cardiovasc Drugs Ther 23, 459–469 (2009). https://doi.org/10.1007/s10557-009-6208-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-009-6208-1

Key words

Navigation