Cardiovascular Drugs and Therapy

, Volume 22, Issue 4, pp 275–282 | Cite as

Caffeinated Coffee Blunts the Myocardial Protective Effects of Statins against Ischemia–Reperfusion Injury in the Rat

  • Yumei Ye
  • Ghassan H. Abu Said
  • Yu Lin
  • Saraswathy Manickavasagam
  • Michael G. Hughes
  • David J. McAdoo
  • Regino J. Perez-Polo
  • Yochai Birnbaum



We asked whether caffeinated coffee (CC) blunts the infarct size (IS)-limiting effects of atorvastatin (ATV).


Adenosine receptor activation is essential for mediating the IS-limiting effects of statins. Caffeine is a nonspecific adenosine receptor blocker, and thus drinking CC may block the myocardial protective effects of statins.


Rat received 3-day ATV (10 mg/kg/day) or water by oral gavage once daily. Drinking water was replaced by water + sugar (7.5 g/100 ml), CC with sugar, or decaffeinated coffee (DC) with sugar. On the 4th day, rats were anesthetized and underwent 30 min of coronary artery occlusion and 4 h reperfusion. Area at risk was assessed by blue dye and infarct size by TTC.


Body weight and area at risk was comparable among groups. IS was 25.1 ± 3.9% of the area at risk in the control group. In rats not receiving ATV, CC (25.5 ± 3.1%) and DC (34.0 ± 2.8%) did not affect IS. IS was significantly reduced by ATV in the water + sugar (11.7 ± 0.7%, p = 0.015) and DC (11.5 ± 1.0%; p < 0.001) groups, but not in the CC group (32.3 ± 3.0%; p = 0.719). ATV increased myocardial levels of Ser-473 phosphorylated Akt in the water + sugar and DC groups, but not in the CC group.


CC, but not DC, abrogated the IS-limiting effects of ATV by blocking the adenosine receptors and preventing the phosphorylation of Akt. CC did not affect IS in rats not receiving ATV.

Key words

infarct size atorvastatin adenosine coffee caffeine 


  1. 1.
    Greenland S. A meta-analysis of coffee, myocardial infarction, and coronary death. Epidemiology. 1993;4:366–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Kawachi I, Colditz GA, Stone CB. Does coffee drinking increase the risk of coronary heart disease? Results from a meta-analysis. Br Heart J. 1994;72:269–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295:1135–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Silletta MG, Marfisi R, Levantesi G, Boccanelli A, Chieffo C, Franzosi M, et al. Coffee consumption and risk of cardiovascular events after acute myocardial infarction: results from the GISSI (Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico)—Prevenzione trial. Circulation. 2007;116:2944–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Riksen NP, Zhou Z, Oyen WJ, Jaspers R, Ramakers BP, Brouwer RM, et al. Caffeine prevents protection in two human models of ischemic preconditioning. J Am Coll Cardiol. 2006;48:700–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Donovan JL, DeVane CL. A primer on caffeine pharmacology and its drug interactions in clinical psychopharmacology. Psychopharmacol Bull. 2001;35:30–48.PubMedGoogle Scholar
  7. 7.
    Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov. 2006;5:247–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Headrick JP, Hack B, Ashton KJ. Acute adenosinergic cardioprotection in ischemic-reperfused hearts. Am J Physiol Heart Circ Physiol. 2003;285:H1797–818.PubMedGoogle Scholar
  9. 9.
    Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H, et al. Alpha 1-adrenoceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5′-nucleotidase activity. J Clin Invest. 1994;93:2197–205.PubMedCrossRefGoogle Scholar
  10. 10.
    Kitakaze M, Minamino T, Node K, Komamura K, Hori M. Activation of ecto-5′-nucleotidase and cardioprotection by ischemic preconditioning. Basic Res Cardiol. 1996;91:23–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, et al. Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation. 2007;115:1581–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Gross ER, Gross GJ. Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res. 2006;70:212–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Lu J, Zang WJ, Yu XJ, Jia B, Chorvatova A, Sun L. Effects of postconditioning of adenosine and acetylcholine on the ischemic isolated rat ventricular myocytes. Eur J Pharmacol. 2006;549:133–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia–reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res. 2004;61:448–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006;70:240–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Reid EA, Kristo G, Yoshimura Y, Ballard-Croft C, Keith BJ, Mentzer RM Jr, et al. In vivo adenosine receptor preconditioning reduces myocardial infarct size via subcellular ERK signaling. Am J Physiol Heart Circ Physiol. 2005;288:H2253–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Yang XM, Krieg T, Cui L, Downey JM, Cohen MV. NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. J Mol Cell Cardiol. 2004;36:411–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Germack R, Dickenson JM. Adenosine triggers preconditioning through MEK/ERK1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat cardiomyocytes. J Mol Cell Cardiol. 2005;39:429–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res. 2006;70:308–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Gao F, Christopher TA, Lopez BL, Friedman E, Cai G, Ma XL. Mechanism of decreased adenosine protection in reperfusion injury of aging rats. Am J Physiol Heart Circ Physiol. 2000;279:H329–38.PubMedGoogle Scholar
  21. 21.
    Li J, Fenton RA, Wheeler HB, Powell CC, Peyton BD, Cutler BS, et al. Adenosine A2a receptors increase arterial endothelial cell nitric oxide. J Surg Res. 1998;80:357–64.PubMedCrossRefGoogle Scholar
  22. 22.
    Smits P, Williams SB, Lipson DE, Banitt P, Rongen GA, Creager MA. Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation. 1995;92:2135–41.PubMedGoogle Scholar
  23. 23.
    Sobrevia L, Yudilevich DL, Mann GE. Activation of A2-purinoceptors by adenosine stimulates l-arginine transport (system y+) and nitric oxide synthesis in human fetal endothelial cells. J Physiol. 1997;499:135–40.PubMedGoogle Scholar
  24. 24.
    Xu Z, Park SS, Mueller RA, Bagnell RC, Patterson C, Boysen PG. Adenosine produces nitric oxide and prevents mitochondrial oxidant damage in rat cardiomyocytes. Cardiovasc Res. 2005;65:803–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Merla R, Ye Y, Lin Y, Manickavasagam S, Huang MH, Perez-Polo RJ, et al. The central role of adenosine in statin-induced ERK 1/2, Akt and eNOS phosphorylation. Am J Physiol Heart Circ Physiol. 2007;293:H1918–28.PubMedCrossRefGoogle Scholar
  26. 26.
    Sanada S, Asanuma H, Minamino T, Node K, Takashima S, Okuda H, et al. Optimal windows of statin use for immediate infarct limitation: 5′-nucleotidase as another downstream molecule of phosphatidylinositol 3-kinase. Circulation. 2004;110:2143–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Ueda Y, Kitakaze M, Komamura K, Minamino T, Asanuma H, Sato H, et al. Pravastatin restored the infarct size-limiting effect of ischemic preconditioning blunted by hypercholesterolemia in the rabbit model of myocardial infarction. J Am Coll Cardiol. 1999;34:2120–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee TM, Su SF, Chou TF, Tsai CH. Effect of pravastatin on myocardial protection during coronary angioplasty and the role of adenosine. Am J Cardiol. 2001;88:1108–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Atar S, Ye Y, Lin Y, Freeberg SY, Nishi SP, Rosanio S, et al. Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2. Am J Physiol Heart Circ Physiol. 2006;290:H1960–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Birnbaum Y, Ye Y, Atar S, Rosanio S, Huang M-H, Lin Y, et al. Atorvastatin-induced myocardial protection against ischemia: iNOS mediates the increase in COX2 activity [Abstract]. Circulation Research. 2005;97:38.Google Scholar
  31. 31.
    Ye Y, Lin Y, Atar S, Huang MH, Perez-Polo JR, Uretsky BF, et al. Myocardial protection by pioglitazone, atorvastatin, and their combination: mechanisms and possible interactions. Am J Physiol Heart Circ Physiol. 2006;291:H1158–69.PubMedCrossRefGoogle Scholar
  32. 32.
    Ye Y, Lin Y, Perez-Polo JR, Huang MH, Hughes MG, McAdoo DJ, et al. Enhanced cardioprotection against ischemia–reperfusion injury with a dipyridamole and low-dose atorvastatin combination. Am J Physiol Heart Circ Physiol. 2007;293:H813–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Seeram NP, Henning SM, Niu Y, Lee R, Scheuller HS, Heber D. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. J Agric Food Chem. 2006;54:1599–603.PubMedCrossRefGoogle Scholar
  34. 34.
    Zoghbi GJ, Htay T, Aqel R, Blackmon L, Heo J, Iskandrian AE. Effect of caffeine on ischemia detection by adenosine single-photon emission computed tomography perfusion imaging. J Am Coll Cardiol. 2006;47:2296–302.PubMedCrossRefGoogle Scholar
  35. 35.
    Cornelis MC, El-Sohemy A. Coffee, caffeine, and coronary heart disease. Curr Opin Lipidol. 2007;18:13–9.PubMedCrossRefGoogle Scholar
  36. 36.
    McCusker RR, Goldberger BA, Cone EJ. Caffeine content of specialty coffees. J Anal Toxicol. 2003;27:520–2.PubMedGoogle Scholar
  37. 37.
    Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.PubMedGoogle Scholar
  38. 38.
    Bonita JS, Mandarano M, Shuta D, Vinson J. Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies. Pharmacol Res. 2007;55:187–98.PubMedCrossRefGoogle Scholar
  39. 39.
    McCusker RR, Fuehrlein B, Goldberger BA, Gold MS, Cone EJ. Caffeine content of decaffeinated coffee. J Anal Toxicol. 2006;30:611–3.PubMedGoogle Scholar
  40. 40.
    Smits P, Thien T, van't Laar A. Circulatory effects of coffee in relation to the pharmacokinetics of caffeine. Am J Cardiol. 1985;56:958–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Majd-Ardekani J, Clowes P, Menash-Bonsu V, Nunan TO. Time for abstention from caffeine before an adenosine myocardial perfusion scan. Nucl Med Commun. 2000;21:361–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Smits P, Aengevaeren WR, Corstens FH, Thien T. Caffeine reduces dipyridamole-induced myocardial ischemia. J Nucl Med. 1989;30:1723–6.PubMedGoogle Scholar
  43. 43.
    Smits P, Corstens FH, Aengevaeren WR, Wackers FJ, Thien T. False-negative dipyridamole-thallium-201 myocardial imaging after caffeine infusion. J Nucl Med. 1991;32:1538–41.PubMedGoogle Scholar
  44. 44.
    Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol. 2003;42:1318–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Bell RM, Yellon DM. Atorvastatin, administered at the onset of reperfusion, and independent of lipid lowering, protects the myocardium by up-regulating a pro-survival pathway. J Am Coll Cardiol. 2003;41:508–15.PubMedCrossRefGoogle Scholar
  46. 46.
    Efthymiou CA, Mocanu MM, Yellon DM. Atorvastatin and myocardial reperfusion injury: new pleiotropic effect implicating multiple prosurvival signaling. J Cardiovasc Pharmacol. 2005;45:247–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med. 2000;6:1004–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Skaletz-Rorowski A, Lutchman M, Kureishi Y, Lefer DJ, Faust JR, Walsh K. HMG-CoA reductase inhibitors promote cholesterol-dependent Akt/PKB translocation to membrane domains in endothelial cells. Cardiovasc Res. 2003;57:253–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Wolfrum S, Dendorfer A, Schutt M, Weidtmann B, Heep A, Tempel K, et al. Simvastatin acutely reduces myocardial reperfusion injury in vivo by activating the phosphatidylinositide 3-kinase/Akt pathway. J Cardiovasc Pharmacol. 2004;44:348–55.PubMedCrossRefGoogle Scholar
  50. 50.
    Manickavasagam S, Ye Y, Lin Y, Perez-Polo RJ, Huang MH, Lui CY, et al. The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation. Cardiovasc Drugs Ther. 2007;21:321–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Kumai T, Matsumoto N, Koitabashi Y, Takeba Y, Oonuma S, Sekine S, et al. Pleiotropic effects of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors: candidate mechanisms for anti-lipid deposition in blood vessels. Curr Med Chem Cardiovasc Hematol Agents. 2005;3:195–201.PubMedCrossRefGoogle Scholar
  52. 52.
    Laufs U. Beyond lipid-lowering: effects of statins on endothelial nitric oxide. Eur J Clin Pharmacol. 2003;58:719–31.PubMedGoogle Scholar
  53. 53.
    Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation. 2004;110:1933–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Azevedo A, Barros H. Coffee and myocardial infarction: heterogeneity of an association in Portuguese men. Eur J Cardiovasc Prev Rehabil. 2006;13:268–73.PubMedCrossRefGoogle Scholar
  55. 55.
    Tsutsumi YM, Patel HH, Lai NC, Takahashi T, Head BP, Roth DM. Isoflurane produces sustained cardiac protection after ischemia–reperfusion injury in mice. Anesthesiology. 2006;104:495–502.PubMedCrossRefGoogle Scholar
  56. 56.
    Cope DK, Impastato WK, Cohen MV, Downey JM. Volatile anesthetics protect the ischemic rabbit myocardium from infarction. Anesthesiology. 1997;86:699–709.PubMedCrossRefGoogle Scholar
  57. 57.
    Gross ER, Hsu AK, Gross GJ. Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ Res. 2004;94:960–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Chen Z, Li T, Zhang B. Morphine postconditioning protects against reperfusion injury in the isolated rat hearts. J Surg Res. 2007 (in press).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yumei Ye
    • 1
    • 2
  • Ghassan H. Abu Said
    • 3
  • Yu Lin
    • 1
  • Saraswathy Manickavasagam
    • 3
  • Michael G. Hughes
    • 4
  • David J. McAdoo
    • 4
  • Regino J. Perez-Polo
    • 2
  • Yochai Birnbaum
    • 1
    • 2
  1. 1.The Division of CardiologyUniversity of Texas Medical BranchGalvestonUSA
  2. 2.The Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonUSA
  3. 3.The Department of Internal MedicineUniversity of Texas Medical BranchGalvestonUSA
  4. 4.The Department of Neuroscience & Cell BiologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations