Cardiovascular Drugs and Therapy

, Volume 21, Issue 6, pp 423–429 | Cite as

Differences in the Effect of Angiotensin-converting Enzyme Inhibitors on the Rate of Endothelial Cell Apoptosis: In Vitro and In Vivo Studies

  • C. Ceconi
  • G. Francolini
  • D. Bastianon
  • G.L. Gitti
  • L. Comini
  • R. Ferrari



An imbalance between endothelial apoptosis and regeneration is one of the initiating events in atherosclerosis. Angiotensin-converting enzyme (ACE) inhibition corrects the endothelial dysfunction observed in coronary artery disease, and this could be the consequence of a reduction in the rate of endothelial apoptosis. The aim of this study was to investigate the effect of different ACE inhibitors on endothelial apoptosis.


We examined the effect of five ACE inhibitors (enalapril, perindopril, quinapril, ramipril, and trandolapril) on the rate of endothelial apoptosis, either in vitro in human umbilical vein endothelial cells (HUVECs), using a serum deprivation method to induce apoptosis, or in vivo in rats, inducing apoptosis via endotoxic shock with Escherichia coli lipopolysaccharides (LPS).


We were unable to detect any significant effect of ACE inhibition on the rate of in vitro endothelial apoptosis at concentrations ranging from 5 × 10−8 to 10−6 M. In contrast, chronic in vivo administration of ACE inhibitors to rats at dosages that had similar hypotensive effects reduced the rate of LPS-induced apoptosis significantly for perindopril (P < 0.001) and nonsignificantly for the other ACE inhibitors. The order of potency of the ACE inhibitors tested was perindopril > ramipril ≫ quinapril = trandolapril = enalapril, with significant differences between perindopril and quinapril (P < 0.01), trandolapril (P < 0.001), and enalapril (P < 0.001). The difference between perindopril and ramipril did not reach significance.


Our experiments suggest differences between ACE inhibitors in terms of inhibition of endothelial apoptosis in vivo.

Key words

ACE inhibition endothelial apoptosis HUVEC perindopril RAEC 

Selected abbreviations


angiotensin-converting enzyme


endothelial cell


endothelial nitric oxide synthase


human umbilical vein endothelial cell




nitric oxide


pooled human serum


rat aortic endothelial cell


systolic blood pressure



The study was supported by an unrestricted grant from Servier, France.


  1. 1.
    Buemi M, Corica F, Marino D, et al. Cardiovascular remodeling, apoptosis, and drugs. Am J Hypertens. 2000;13:450–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 2006;47:C7–12.PubMedCrossRefGoogle Scholar
  3. 3.
    The European Reduction Of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782–8.CrossRefGoogle Scholar
  4. 4.
    Bertrand ME. Provision of cardiovascular protection by ACE inhibitors: a review of recent trials. Curr Med Res Opin. 2004;20:1559–69.PubMedCrossRefGoogle Scholar
  5. 5.
    Ceconi C, Fox KM, Remme WJ, et al. ACE inhibition with perindopril and endothelial dysfunction. Results of a substudy of the EUROPA study: PERTINENT. Cardiovasc Res. 2007;73:237–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.PubMedGoogle Scholar
  7. 7.
    Moncada S, Higgs A. The l-arginine-nitric oxide pathway. N Engl J Med. 1993;329:2002–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Varin R, Mulder P, Tamion F, et al. Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure: role of nitric oxide, prostanoids, oxidant stress, and bradykinin. Circulation. 2000;102:351–6.PubMedGoogle Scholar
  9. 9.
    Ohashi H, Takagi H, Oh H, et al. Phosphatidylinositol 3-kinase/Akt regulates angiotensin II-induced inhibition of apoptosis in microvascular endothelial cells by governing survivin expression and suppression of caspase-3 activity. Circ Res. 2004;94:785–93.PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi T, Taniguchi T, Konishi H, Kikkawa U, Ishikawa Y, Yokoyama M. Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular smooth muscle cells. Am J Physiol. 1999;276:H1927–H1934.PubMedGoogle Scholar
  11. 11.
    Li W, Ye Y, Fu B, et al. Genetic deletion of AT2 receptor antagonizes angiotensin II-induced apoptosis in fibroblasts of the mouse embryo. Biochem Biophys Res Commun. 1998;250:72–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Cigola E, Kajstura J, Li B, Meggs LG, Anversa P. Angiotensin II activates programmed myocyte cell death in vitro. Exp Cell Res. 1997;231:363–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Bhaskaran M, Reddy K, Radhakrishanan N, Franki N, Ding G, Singhal PC. Angiotensin II induces apoptosis in renal proximal tubular cells. Am J Physiol Renal Physiol. 2003;284:F955–F965.PubMedGoogle Scholar
  14. 14.
    Pollman MJ, Yamada T, Horiuchi M, Gibbons GH. Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin II. Circ Res. 1996;79:748–56.PubMedGoogle Scholar
  15. 15.
    Kakinuma Y, Hama H, Sugiyama F, Goto K, Murakami K, Fukamizu A. Anti-apoptotic action of angiotensin fragments to neuronal cells from angiotensinogen knock-out mice. Neurosci Lett. 1997;232:167–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakamura M, Tanaka M, Abe S, Fujiwara H. Sudden pressure elevation can trigger acute muscle cell death of the heart and aorta. Atherosclerosis. 1999;146:25–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Tea BS, Dam TV, Moreau P, Hamet P, deBlois D. Apoptosis during regression of cardiac hypertrophy in spontaneously hypertensive rats. Temporal regulation and spatial heterogeneity. Hypertension. 1999;34:229–35.PubMedGoogle Scholar
  18. 18.
    Otani A, Takagi H, Suzuma K, Honda Y. Angiotensin II potentiates vascular endothelial growth factor-induced angiogenic activity in retinal microcapillary endothelial cells. Circ Res. 1998;82:619–28.PubMedGoogle Scholar
  19. 19.
    Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM. Angiotensin II induces apoptosis of human endothelial cells. Protective effect of nitric oxide. Circ Res. 1997;81:970–6.PubMedGoogle Scholar
  20. 20.
    Akishita M, Nagai K, Xi H, et al. Renin-angiotensin system modulates oxidative stress-induced endothelial cell apoptosis in rats. Hypertension. 2005;45:1188–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Frey EA, Finlay BB. Lipopolysaccharide induces apoptosis in a bovine endothelial cell line via a soluble CD14 dependent pathway. Microb Pathog. 1998;24:101–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Hotchkiss RS, Tinsley KW, Swanson PE, Karl IE. Endothelial cell apoptosis in sepsis. Crit Care Med. 2002;30:S225–S228.PubMedCrossRefGoogle Scholar
  23. 23.
    Yang Z, Breider MA, Carroll RC, Miller MS, Bochsler PN. Soluble CD14 and lipopolysaccharide-binding protein from bovine serum enable bacterial lipopolysaccharide-mediated cytotoxicity and activation of bovine vascular endothelial cells in vitro. J Leukoc Biol. 1996;59:241–7.PubMedGoogle Scholar
  24. 24.
    Arditi M, Zhou J, Dorio R, Rong GW, Goyert SM, Kim KS. Endotoxin-mediated endothelial cell injury and activation: role of soluble CD14. Infect Immun. 1993;61:3149–56.PubMedGoogle Scholar
  25. 25.
    Bannerman DD, Goldblum SE. Mechanisms of bacterial lipopolysaccharide-induced endothelial apoptosis. Am J Physiol Lung Cell Mol Physiol. 2003;284:L899–L914.PubMedGoogle Scholar
  26. 26.
    Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52:2745–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Kwak HJ, So JN, Lee SJ, Kim I, Koh GY. Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett. 1999;448:249–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Comini L, Bachetti T, Cargnoni A, et al. Therapeutic modulation of the nitric oxide pathway: are all ACE inhibitors equivalent. Pharmacol Res. 2007;56:42–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-Kinase/Akt signal transduction pathway. Circ Res. 2000;86:24–9.PubMedGoogle Scholar
  30. 30.
    Dzau VJ, Bernstein K, Celermajer D, et al. Pathophysiologic and therapeutic importance of tissue ACE: a consensus report. Cardiovasc Drugs Ther. 2002;16:149–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Remme WJ. Prevention of cardiovascular events by perindopril in patients with stable coronary disease does not depend on blood pressure and its reduction—results from the EUROPA study. Circulation. 2004;110:III628Abstract.Google Scholar
  32. 32.
    Comini L, Boraso A, Bachetti T, et al. Effects of endotoxic shock on neuronal NOS and calcium transients in rat cardiac myocytes. Pharmacol Res. 2005;51:409–17.PubMedGoogle Scholar
  33. 33.
    Ceneviva GD, Tzeng E, Hoyt DG, et al. Nitric oxide inhibits lipopolysaccharide-induced apoptosis in pulmonary artery endothelial cells. Am J Physiol. 1998;275:L717–L728.PubMedGoogle Scholar
  34. 34.
    Tzeng E, Billiar TR. Nitric oxide and the surgical patient. Identifying therapeutic targets. Arch Surg. 1997;132:977–82.PubMedGoogle Scholar
  35. 35.
    Miyoshi M, Nagata K, Imoto T, Goto O, Ishida A, Watanabe T. ANG II is involved in the LPS-induced production of proinflammatory cytokines in dehydrated rats. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1092–R1097.PubMedGoogle Scholar
  36. 36.
    Luo SF, Wang CC, Chiu CT, et al. Lipopolysaccharide enhances bradykinin-induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells. Br J Pharmacol. 2000;130:1799–808.PubMedCrossRefGoogle Scholar
  37. 37.
    Yin H, Chao L, Chao J. Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways. J Biol Chem. 2005;280:8022–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Dimmeler S, Zeiher AM. Nitric oxide—an endothelial cell survival factor. Cell Death Differ. 1999;6:964–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Fujita N, Manabe H, Yoshida N, et al. Inhibition of angiotensin-converting enzyme protects endothelial cell against hypoxia/reoxygenation injury. Biofactors. 2000;11:257–66.PubMedGoogle Scholar
  40. 40.
    Kim YM, Kim TH, Seol DW, Talanian RV, Billiar TR. Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release. J Biol Chem. 1998;273:31437–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim YM, Talanian RV, Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem. 1997;272:31138–48.PubMedCrossRefGoogle Scholar
  42. 42.
    Li J, Bombeck CA, Yang S, Kim YM, Billiar TR. Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J Biol Chem. 1999;274:17325–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Mohr S, Zech B, Lapetina EG, Brune B. Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem Biophys Res Commun. 1997;238:387–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G, Finazzi-Agro A. S-nitrosylation regulates apoptosis. Nature. 1997;388:432–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Rossig L, Fichtlscherer B, Breitschopf K, et al. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem. 1999;274:6823–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Li J, Billiar TR, Talanian RV, Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun. 1997;240:419–24.PubMedCrossRefGoogle Scholar
  47. 47.
    Liu L, Stamler JS. NO: an inhibitor of cell death. Cell Death Differ. 1999;6:937–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Ceconi C, Francolini G, Olivares A, Comini L, Bachetti T, Ferrari R. Angiotensin-converting enzyme (ACE) inhibitors have different selectivity for bradykinin binding sites of human somatic ACE. Eur J Pharmacol 2007 DOI  10.1016/j.ejphar.2007.07.061
  49. 49.
    Yu W, Akishita M, Xi H, et al. Angiotensin converting enzyme inhibitor attenuates oxidative stress-induced endothelial cell apoptosis via p38 MAP kinase inhibition. Clin Chim Acta. 2006;364:328–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Galvez AS, Fiedler JL, Ocaranza MP, Jalil JE, Lavandero S, Diaz-Araya G. Perindopril regulates beta-agonist-induced cardiac apoptosis. J Cardiovasc Pharmacol. 2005;46:255–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Mailloux A, Deslandes B, Vaubourdolle M, Baudin B. Captopril and enalaprilat decrease antioxidant defences in human endothelial cells and are unable to protect against apoptosis. Cell Biol Int. 2003;27:825–30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • C. Ceconi
    • 1
  • G. Francolini
    • 2
  • D. Bastianon
    • 2
  • G.L. Gitti
    • 2
  • L. Comini
    • 2
  • R. Ferrari
    • 1
  1. 1.Department of CardiologyUniversity of FerraraFerraraItaly
  2. 2.Cardiovascular Pathophysiology Research CenterFoundation Salvatore Maugeri IRCCSGussagoItaly

Personalised recommendations