Skip to main content
Log in

The Gender Differences in the Relaxation to Levosimendan of Human Internal Mammary Artery

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

The mechanism of the vasorelaxation to levosimendan varies depending on the vascular bed and species studied. Here, we examined the vasorelaxation to levosimendan as well as its modification by various potassium channel antagonists in human internal mammary artery (IMA) obtained from male and female patients.

Methods

IMA grafts were supplied from 27 male and 19 age-matched female patients undergoing coronary bypass operation. The contraction to noradrenaline and relaxation to levosimendan were studied in IMA rings obtained from both gender. The relaxations to levosimendan were also assessed in the presence of glibenclamide (10 μM), an adenosine triphosphate-sensitive potassium channel (KATP) blocker, or charybdotoxin (100 nM), a calcium-activated potassium channel (KCa) blocker, or 4-aminopyridine(1 mM), a voltage-sensitive potassium channel (Kv) inhibitor.

Results

Concentration–response curves to noradrenaline were not different in IMA rings from either gender. Pretreatment with levosimendan (3 × 10−7 M) slightly modified the contractions to noradrenaline in both gender. Levosimendan (10−9–10−5 M) produced concentration-dependent relaxation in IMA rings, contracted by noradrenaline (5 × 10−6 M), from males and females. The vasodilatory effects of levosimendan were more pronounced in the arteries from males (83%) than females (69%), in term of the maximal relaxation (E max). Charybdotoxin and glibenclamide significantly inhibited the relaxation to levosimendan in the arteries from males but not in those of females.

Conclusions

The vasodilating efficacy of levosimendan and its relaxation mechanism differs between the arteries from males and females, which may have clinical consequences in the treatment of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vegh A, Papp JG, Udvary E, Kaszala K. Hemodynamic effects of calcium-sensitizing agents. J Cardiovasc Pharmacol 1995;26:20–31.

    Article  Google Scholar 

  2. Harkin CP, Pagel PS, Tessmer JP, Warltier DC. Systemic and coronary hemodynamic actions and left ventricular functional effects of levosimendan in conscious dogs. J Cardiovasc Pharmacol 1995;26:179–88.

    Article  PubMed  CAS  Google Scholar 

  3. Follath F, Cleland JGF, Just H, Papp JG, Scholz H, Peuhkurinen K, et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet 2002;360:196–202.

    Article  PubMed  CAS  Google Scholar 

  4. Michaels AD, McKeown B, Kostal M, Vakharia KT, Jordan MV, Gerber IL et al. Effects of intravenous levosimendan on human coronary vasomotor regulation, left ventricular wall stress, and myocardial oxygen uptake. Circulation 2005;111:1504–09.

    Article  PubMed  CAS  Google Scholar 

  5. Pataricza J, Hohn J, Petri A, Balogh A, Papp JG. Comparison of the vasorelaxant effect of cromakalim and the new inodilator, levosimendan, in human isolated portal vein. J Pharm Pharmacol 2000;52:213–17.

    Article  PubMed  CAS  Google Scholar 

  6. Hohn J, Pataricza J, Petri A, Tóth GK, Balogh A, Varró A, et al. Levosimendan interacts with potassium channel blockers in human saphenous veins. Basic Clin Pharmacol Toxicol 2004;94:271–3.

    PubMed  Google Scholar 

  7. Yokoshiki H, Katsube Y, Sunagawa M, Sperelakis N. Levosimendan, a novel Ca2+ sensitizer, activates the glibenclamide- sensitive K+ channel in rat arterial myocytes. Eur J Pharmacol 1997;333:249–59.

    Article  PubMed  CAS  Google Scholar 

  8. De Witt BJ, Ibrahim IN, Bayer E, Fields AM, Richards TA, Banister RE, et al. An analysis of responses to levosimendan in the pulmonary vascular bed of the cat. Anesth Analg 2002;94:1427–33.

    Article  PubMed  Google Scholar 

  9. Pataricza J, Krassoi I, Hohn J, Kun A, Papp JG. Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery. Cardiovasc Drugs Ther 2003;17:115–21.

    Article  PubMed  CAS  Google Scholar 

  10. Orshal JM, Khalil RA. Gender, sex hormones, and vascular tone. Am J Physiol Regul Integr Comp Physiol 2004;286:R233–49.

    PubMed  CAS  Google Scholar 

  11. Kahonen M, Tolvanen JP, Sallinen K, Wu X, Porsti I. Influence of gender on control of arterial tone in experimental hypertension. Am J Physiol 1998;275:H15–22.

    PubMed  CAS  Google Scholar 

  12. Kauser K, Rubanyi GM. Gender difference in endothelial dysfunction in the aorta of spontaneously hypertensive rats. Hypertension 1995;25:517–23.

    PubMed  CAS  Google Scholar 

  13. Kneale BJ, Chowienczyk PJ, Brett SE, Coltart DJ, Ritter JM. Gender differences in sensitivity to adrenergic agonists of forearm resistance vasculature. J Am Coll Cardiol 2000;36:1233–1238.

    Article  PubMed  CAS  Google Scholar 

  14. Pinna C, Cignarella A, Zanardo R, Bolego C, Puglisi L. Gender differences and antioxidant treatment affect aortic reactivity in short-term diabetic rats. Eur J Pharmacol 2001;431:71–9.

    Article  PubMed  CAS  Google Scholar 

  15. Edwards FH, Carey JS, Grover FL, Bero JW, Hartz RS. Impact of gender on coronary bypass operative mortality. Ann Thorac Surg 1998;66:125–131.

    Article  PubMed  CAS  Google Scholar 

  16. Zitser-Gurevich Y, Simchen E, Galai N, Mandel M; ISCAB Consortium. Effect of perioperative complications on excess mortality among women after coronary bypass: the Israeli Coronary Artery Bypass Graft study (ISCAB). J Thorac Cardiovasc Surg 2002;123:517–24.

    Article  PubMed  Google Scholar 

  17. Hammar N, Sandberg E, Larsen FF, Ivert T. Comparison of early and late mortality in men and women after isolated coronary artery bypass graft surgery in Stockholm, Sweden, 1980 to 1989. J Am Coll Cardiol 1997;29:659–64.

    Article  PubMed  CAS  Google Scholar 

  18. Edwards FH, Ferraris VA, Shahian DM, Peterson E, Furnary AP, Haan CK, et al. Gender-specific practice guidelines for coronary artery bypass surgery: perioperative management. Ann Thorac Surg 2005;79:2189–94.

    Article  PubMed  Google Scholar 

  19. Akar F, Uydes-Dogan BS, Tufan H, Aslamaci S, Koksoy C, Kanzik I. The comparison of the responsiveness of human isolated internal mammary and gastroepiploic arteries to levcromakalim: an alternative approach to the management of graft spasm. Br J Clin Pharmacol 1997;44:49–56.

    Article  PubMed  CAS  Google Scholar 

  20. Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995;268:C799–822.

    PubMed  CAS  Google Scholar 

  21. Velez DA, Morris CD, Muraki S, Budde JM, Otto RN, Zhao Z-Q, et al. Brief pretreatment of radial artery conduits with phenoxybenzamine prevents vasoconstriction long term. Ann Thorac Surg 2001;72:1977–84.

    Article  PubMed  CAS  Google Scholar 

  22. Sandell EP, Hayha M, Antila S, Heikkinen P, Ottoila P, Lehtonen LA, et al. Pharmacokinetics of levosimendan in healthy volunteers and patients with congestive heart failure. J Cardiovasc Pharmacol 1995;26:S57–62.

    Article  PubMed  CAS  Google Scholar 

  23. Lilleberg J, Nieminen MS, Akkila J, Heikkiläc L, Kuitunend A, Lehtonen L, et al. Effects of a new calcium sensitizer, levosimendan, on haemodynamics, coronary blood flow and myocardial substrate utilization early after coronary artery bypass grafting. Eur Heart J 1998;19:660–8.

    Article  PubMed  CAS  Google Scholar 

  24. Uydes-Dogan BS, Nebigil M, Aslamaci S, Onur E, Kanzik I, Akar F. The comparison of vascular reactivities of arterial and venous grafts to vasodilators: management of graft spasm. Int J Cardiol 1996;53:137–45.

    Article  PubMed  CAS  Google Scholar 

  25. Bowman P, Haikala H, Paul RJ. Levosimendan, a calcium sensitizer in cardiac muscle, induces relaxation in coronary smooth muscle through calcium desensitization. J Pharmacol Exp Ther 1999;288:316–25.

    PubMed  CAS  Google Scholar 

  26. Quast U. Do the K+ channel openers relax smooth muscle by opening K+ channels? Trends Pharmacol Sci 1993;14:332–7.

    Article  PubMed  CAS  Google Scholar 

  27. Krassoi I, Pataricza J, Kun A, Papp JG. Calcium-dependent vasorelaxant capacity of levosimendan in porcine and human epicardial coronary artery preparations. Cardiovasc Drugs Ther 2000;14:691–3.

    Article  PubMed  CAS  Google Scholar 

  28. Yildiz O, Seyrek M, Yildirim V, Demirkilic U, Nacitarhan C. Potassium channel-related relaxation by levosimendan in the human internal mammary artery. Ann Thorac Surg 2006;81:1715–9.

    Article  PubMed  Google Scholar 

  29. Usta C, Eksert B, Golbasi I, Bigat Z, Ozdem SS. The role of potassium channels in the vasodilatory effect of levosimendan in human internal thoracic arteries. Eur J Cardiothorac Surg 2006;30:329–32.

    Article  PubMed  Google Scholar 

  30. Dignan RJ, Yeh Jr. T, Dyke CM, Lutz HA 3rd, Wechsler AS. The influence of age and sex on human internal mammary artery size and reactivity. Ann Thorac Surg 1992;53:792–7.

    Article  PubMed  CAS  Google Scholar 

  31. Stallone JN, Crofton JT, Share L. Sexual dimorphism in vasopressin-induced contraction of rat aorta. Am J Physiol 1991;260:H453–8.

    PubMed  CAS  Google Scholar 

  32. Crews JK, Khalil RA. Gender-specific inhibition of Ca2+ entry mechanisms of arterial vasoconstriction by sex hormones. Clin Exp Pharmacol Physiol 1999;26:707–15.

    Article  PubMed  CAS  Google Scholar 

  33. Murphy JG, Khalil RA. Gender-specific reduction in contractility and [Ca2+]i in vascular smooth muscle cells of female rat. Am J Physiol Cell Physiol 2000;278:C834–44.

    PubMed  CAS  Google Scholar 

  34. Teede H, van der Zypp A, Majewski H. Gender differences in protein kinase G-mediated vasorelaxation of rat aorta. Clin Sci (Lond.) 2001;100:473–9.

    CAS  Google Scholar 

  35. Shaw L, Taggart M, Austin C. Effects of the oestrous cycle and gender on acute vasodilatory responses of isolated pressurized rat mesenteric arteries to 17 β-oestradiol. Br J Pharmacol 2001;132:1055–62.

    Article  PubMed  CAS  Google Scholar 

  36. Honda H, Unemoto T, Kogo H. Different mechanisms for testosterone-induced relaxation of aorta between normotensive and spontaneously hypertensive rats. Hypertension 1999;34:1232–6.

    PubMed  CAS  Google Scholar 

  37. Skafar DF, Xu R, Morales J, Ram J, Sowers JR. Female sex hormones and cardiovascular disease in women. J Clin Endocrinol Metab 1997;82:3913–8.

    Article  PubMed  CAS  Google Scholar 

  38. Chambliss KL, Shaul PW. Estrogen modulation of endothelial nitric oxide synthase. Endocr Rev 2002;23:665–86.

    Article  PubMed  CAS  Google Scholar 

  39. Barron LA, Gren GM, Khalil RA. Gender differences in vascular smooth muscle reactivity to increases in extracellular sodium salt. Hypertension 2002;39;425–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This paper is supported by the Gazi University Research Fund (BAP 02/2006-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Akar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akar, F., Manavbasi, Y., Parlar, A.I. et al. The Gender Differences in the Relaxation to Levosimendan of Human Internal Mammary Artery. Cardiovasc Drugs Ther 21, 331–338 (2007). https://doi.org/10.1007/s10557-007-6047-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-007-6047-x

Key words

Navigation