Cardiovascular Drugs and Therapy

, Volume 21, Issue 1, pp 29–36 | Cite as

Long-term Pharmacological Activation of PPARγDoes not Prevent Left Ventricular Remodeling in Dogs with Advanced Heart Failure

  • George Suzuki
  • Sanjaya Khanal
  • Sharad Rastogi
  • Hideaki Morita
  • Takayuki Mishima
  • Petros V. Anagnostopoulos
  • Omar Nass
  • Victor G. Sharov
  • Elaine J. Tanhehco
  • Sidney Goldstein
  • Hani N. Sabbah



Peroxisome proliferator-activated receptor γ (PPARγ) activators affect the myocardium through inhibition of inflammatory cytokines and metabolic modulation but their effect in the progression of heart failure is unclear. In the present study, we examined the effects of the PPARγ activator, GW347845 (GW), on the progression of heart failure.

Methods and results

Heart failure was produced in 21 dogs by intracoronary microembolizations to LV ejection fraction (EF) less than 30% and randomized to 3 months of therapy with high-dose GW (10 mg/Kg daily, n = 7), low-dose GW (3 mg/Kg daily, n = 7), or no therapy (control, n = 7). In control dogs, EF significantly decreased (28 ± 1 vs. 22 ± 1%, p < 0.001) and end-diastolic volume (EDV) and end-systolic volume (ESV) increased during the 3 months of the follow-up period (64 ± 4 vs. 76 ± 5; p = 0.003, 46 ± 3 vs. 59 ± 4 ml, p = 0.002, respectively). In dogs treated with low-dose GW, EDV increased significantly (69 ± 4 vs.81 ± 5 ml, p = 0.01), whereas ESV remained statistically unchanged (50 ± 3 vs. 54 ± 3 ml, p = 0.10) resulting in modestly increased ejection fraction (27 ± 1 vs. 32 ± 3%, p = 0.05). In dogs treated with high-dose GW, both EDV and ESV increased (72 ± 4 vs. 79 ± 5 ml, p = 0.04; 53 ± 3 vs. 62 ± 5 ml, p = 0.04) and EF decreased (26 ± 1 vs. 23 ± 1%, p = 0.04) as with control dogs. There was significantly increased myocardial hypertrophy as evidenced by increased LV weight to body weight ratio and myocyte cross-section area in the GW treated animals compared to controls. Compared to control, treatment with GW had no effect on mRNA expression of PPARγ, inflammatory cytokines, stretch response proteins, or transcription factors that may induce hypertrophy


Long-term PPARγ activation with GW did not prevent progressive LV remodeling in dogs with advanced heart failure.

Key words

heart failure remodeling drugs hemodynamics 


Conflict of Interests

There are no conflicts to disclose.


  1. 1.
    Breider MA, Gough AW, Haskins JR, Sobocinski G, de la Iglesia FA. Troglitazone-induced heart and adipose tissue cell proliferation in mice. Toxicol Pathol 1999;27:545–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Tai TA, Jennermann C, Brown KK, Oliver BB, MacGinnitie MA, Wilkison WO, et al. Activation of the nuclear receptor peroxisome proliferators-activated receptor gamma promotes brown adipocyte differentiation. J Biol Chem 1996;271:20090–114.CrossRefGoogle Scholar
  3. 3.
    Lee MK, Miles PD, Khoursheed M, Gao KM, Moossa AR, Olefsky JM. Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes 1994;43:1435–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Kelly DP. PPARs of the heart. Circ Res 2003;92:482–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Shimabukuro M, Higa S, Shinzato T, Nagamine F, Komiya I, Takasu N. Cardioprotective effects of troglitazone in streptozotocin-induced diabetic rats. Metabolism 1996;45:1168–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998;391:82–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Takano H, Nagai T, Asakawa M, Toyozaki T, Oka T, Komuro I, et al. Peroxisome proliferators-activated receptor activators inhibit lipoplysaccharide-induced tumor necrosis factor-alpha expression in neonatal rat cardiac myocytes. Circ Res 2000;87:596–602.PubMedGoogle Scholar
  8. 8.
    Lee TM, Chou TF. Troglitazone administration limits infarct size by reduced phosphorylation of canine myocardial connexin43 proteins. Am J Physiol Heart Circ Physiol 2003;285:H1650–9.PubMedGoogle Scholar
  9. 9.
    Zhu P, Lu L, Xu Y, Schwartz GG. Troglitazone improves recovery of left ventricular function after regional ischemia in pigs. Circulation 2000;101:1165–71.PubMedGoogle Scholar
  10. 10.
    Nemoto S, Razeghi P, Ishiyama M, De Freitas G, Taegtmeyer H, Carbello BA, et al. PPARγ agonist rosiglitazone ameliorates ventricular dysfunction in experimental chronic mitral regurgitation. Am J Physiol Heart Circ Physiol 2004;288:H77–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Xu Y, Gen M, Lu L, et al. PPARγ activation fails to provide myocardial protection in ischemia and reperfusion in pigs. Am J Physiol Heart Circ Physiol 2005;288:H1314–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang CH, Weisel RD, Liu PP, Fedak PWM, Verma S. Glitazones and heart failure: critical appraisal for the clinician. Circulation 2003;107:1350–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Nesto RW, Ball D, Bonow RO, Fonseca V, Grundy SM, Horton ES, et al. Thiazolidine use, fluid retention, and congestive heart failure. A consensus statement from the Ameicarn Heart Association and the American Diabetes Association. Diabetes Care 2004;27:256–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, et al. A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol 1991;260:H1379–84.PubMedGoogle Scholar
  15. 15.
    Sabbah HN, Shimoyama H, Kono T, Gupta RC, Sharov VG, Scicli G, Levine TB, et al. Effects of long-term monotherapy with enalapril, metoprolol, and digoxin on the progression of left ventricular dysfunction and dilation in dogs with reduced ejection fraction. Circulation 1994;89:2852–9.PubMedGoogle Scholar
  16. 16.
    Li AC, Brown KK, Silvestre MJ, Wilson TM, Palinski W, Glass C. Peroxisome proliferator-activated receptor r ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000;106:523–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Grossman W: Pressure measurement. In: Grossman W, Baim DS editors. Cardiac catheterization, angiography, and intervention. Philadelphia: Lea & Febiger; 1991. p. 123.Google Scholar
  18. 18.
    Liu Yh, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, et al. Effects of angiotension-converting enzyme inhibitors and angiotension II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotension II type 2 receptors. J Clin Invest 1997;99:1926–35.PubMedCrossRefGoogle Scholar
  19. 19.
    Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone Trial (VEST). Circulation 2001;103:2055–9.PubMedGoogle Scholar
  20. 20.
    Torre-Aminone G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 1996;27 5:1201–6, Apr.CrossRefGoogle Scholar
  21. 21.
    Deswal A, Bozkurt B, Seta Y, Parilti-Eiswirth S, Hayes FA, Blosch C, et al. Safety and efficacy of a soluble p75 tumor necrosis factor receptor (etanercept) in patients with advanced heart failure. Circulation 1999;99:3224–6.PubMedGoogle Scholar
  22. 22.
    Bozkurt B, Torre-Amione G, Warren MS, Whitmore J, Soran OZ, Feldman AM, et al. Results of targeted anti-tumor necrosis factory therapy with entanercept (ENBREL) in patients with advanced heart failure. Circulation 2001;103:1044–7.PubMedGoogle Scholar
  23. 23.
    Sliwa K, Skudicky D, Candy G, Wisenbaugh T, Sareli P. Randomized investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 1998;351:1091–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004;109:1594–602.PubMedCrossRefGoogle Scholar
  25. 25.
    Ricote M, Li AC, Wilson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998;391:79–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Shimoyama M, Ogino K, Tanaka Y, Ikeda T, Hisatome I. Hemodynamic basis for the acute cardiac effects of troglitazone in isolated perfused rat hearts. Diabetes 1999;48:609–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Ghazzi MN, Perez JE, Antonucci TK, Driscoll JH, Huang SM, Faja BW, et al. Cardiac and glycemic benefits of troglitazone treatment in NIDDM: the troglitazone study group. Diabetes 1997;46:433–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Delerive P, Martin-Nizard F, Chinetti G, Trottein F, Fruchart JC, Najib J, et al. Peroxisome proliferators-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999;85:394–402.PubMedGoogle Scholar
  29. 29.
    Buchanan TA, Meehan WP, Jeng YY, Yang D, Chan TM, Nadler JL, et al. Blood pressure lowering by pioglitazome. Evidence for a direct vascular effect. J Clin Invest 1995;96:354–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Asakawa M, Takano H, Nagai T, Uozumi H, Hasegawa H, Kubuto N, et al. Peroxisome proliferator-activated receptor gamma plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 2002;105:1240–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Williams GD, Deldar A, Jordan WH, Gries C, Long GG, Dimarchi RD. Thiazolidinedione, Tanabe-174 (LY282449), in the rat and dog. Diabetes 1993;42 Suppl:59A.Google Scholar
  32. 32.
    Bell D, McDermott BJ. Troglitazone does not initiate hypertrophy but can sensitize cardiomyocytes to grow effects the serum. Eur J Pharmacol 2000;390:237–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Breider MA, Gough AW, Haskins JR, Sobocinski G, de la Iglesia FA. Troglitazone-induced heart and adipose tissue cell proliferation in mice. Toxicol Pathol 1999;27:545–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Xin X, Yang S, Kowalski J, Gerritsen ME. Peroxisome proliferators-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 1999;274:9116–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Bishop-Bailey D, Hla T. Endothelial cell apoptosis induced by the peroxisome proliferators-activated receptor (PPAR) ligand 15-deoxy-Delta 12, 14-prostaglandin J2. J Biol Chem 1999;274:17042–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang CH, Weisel RD, Liu PP, Fedak PWM, Verma S. Glitazones and heart failure: critical appraisal for the clinician. Circulation 2003;107:1350–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Wooltron E. Rosiglitazone (Avandia) and pioglitazone (Actos) and heart failure. Can Medical Assoc J 2002;166:219.Google Scholar
  38. 38.
    Belcher GL, Michel JL. Tolerability profile of pioglitazone in combination with a sulfonyluria or metformin in controlled clinical trials. Diabetes 2001;49 Suppl 2:A416.Google Scholar
  39. 39.
    Aronoff SL. Adverse events with pioglitazone. Diabetes 2000;49 Suppl 1:A340.Google Scholar
  40. 40.
    St. John Sutton M, Rendell M, Dandona P, Dole JF, Murphy K, Patwardhan R, et al. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care 2002;25:2058–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Murphy GJ, Holder JC. PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol Sci 2000;21:469–74.PubMedCrossRefGoogle Scholar
  42. 42.
    Sato H, Ishihara S, Kawashima K, Moriyama N, Suetsugu H, Kazumori H, Okuyama T, et al. Expression of peroxisome proliferators-activated receptor (PPAR) gamma in gastric cancer and inhibitory effects of PPARgamma agonists. Br J Cancer 2000;83:1394–400.PubMedCrossRefGoogle Scholar
  43. 43.
    Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, et al. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 1999;104:383–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Kawahito Y, Kondo M, Tsubouchi Y, Hashiramoto A, Bishop-Bailey D, Inoue K, et al. 15-deoxy-delta (12,14)-PGJ(2) induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J Clin Invest 2000;106:189–97.PubMedCrossRefGoogle Scholar
  45. 45.
    Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomized controlled trial. Lancet 2005;366:1279–89.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • George Suzuki
    • 1
  • Sanjaya Khanal
    • 1
  • Sharad Rastogi
    • 1
  • Hideaki Morita
    • 1
  • Takayuki Mishima
    • 1
  • Petros V. Anagnostopoulos
    • 1
  • Omar Nass
    • 1
  • Victor G. Sharov
    • 1
  • Elaine J. Tanhehco
    • 1
  • Sidney Goldstein
    • 1
  • Hani N. Sabbah
    • 1
    • 2
  1. 1.Division of Cardiovascular MedicineHenry Ford Heart & Vascular InstituteDetroitUSA
  2. 2.Cardiovascular ResearchHenry Ford HospitalDetroitUSA

Personalised recommendations