Skip to main content

Advertisement

Log in

Effects of Levosimendan on Myocardial Infarct Size and Hemodynamics in a Closed-Chest Porcine Ischemia–Reperfusion Model

  • Basic Pharmacology
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Introduction

Levosimendan is a positive inotropic drug with vasodilator action and proposed myocardioprotective properties. In a canine model, levosimendan increased coronary collateral flow and reduced myocardial infarct size (IS). We investigated the effect of levosimendan on IS and hemodynamics in the closed-chest porcine ischemia–reperfusion model, which is devoid of coronary collaterals.

Methods

Infusion with levosimendan (0.2 μg/kg/min following a bolus of 24 μg/kg) or saline was initiated 30 min prior to ischemia in anaesthetized pigs (n = 10 in both groups). Balloon occlusion of the left anterior descending coronary artery for 45 min was followed by 2 1/2 h of reperfusion. Hemodynamics were monitored with a Swan-Ganz catheter and a left ventricular pressure micromanometer. Left ventricular systolic and diastolic function was estimated by dP/dtmax and τ, respectively. Myocardial area at risk (AAR) and IS were assessed in vivo by myocardial perfusion imaging (MPI) and ex vivo by histopathology (fluorescein staining for AAR, tetrazolium staining for IS).

Results

Prior to ischemia, levosimendan improved left ventricular systolic and diastolic function with coincident preload and afterload reduction. Cardiac output increased by 10 ± 4% (p = 0.04), dP/dtmax by 15 ± 5% (p = 0.01). Pulmonary capillary wedge pressure decreased by 18 ± 3% (p = 0.04), τ by 11 ± 2% (p = 0.001), and mean arterial pressure by 11 ± 2% (p < 0.001). A similar trend was observed during ischemia–reperfusion. The ratio of IS/AAR was not reduced by levosimendan compared to saline as evaluated by histopathology (76 ± 4% vs. 64 ± 7%, p = 0.12) and by MPI (94 ± 2% vs. 87 ± 5%, p = 0.14).

Conclusion

Levosimendan improves hemodynamics but does not reduce IS in an ischemia–reperfusion model without coronary collaterals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAR:

area at risk

CO:

cardiac output

CVP:

central venous pressure

dP/dtmax :

estimate of left ventricular systolic function

HR:

heart rate

IS:

infarct size

KATP channels:

ATP-sensitive potassium channels

LAD:

left anterior descending coronary artery

LEVO:

levosimendan

LVP:

left ventricular pressure

MAP:

mean arterial pressure

MBq:

mega Becquerel

MPI:

myocardial perfusion imaging

PAP:

pulmonary artery pressure

PCWP:

pulmonary capillary wedge pressure

PVR:

pulmonary vascular resistance

SV:

stroke volume

SVR:

systemic vascular resistance

Tau (τ):

estimate of left ventricular diastolic function

References

  1. du Toit EF, Muller CA, McCarthy J, Opie LH. Levosimendan: effects of a calcium sensitizer on function and arrhythmias and cyclic nucleotide levels during ischemia/reperfusion in the Langendorff-perfused guinea pig heart. J Pharmacol Exp Ther 1999;290:505–14.

    CAS  PubMed  Google Scholar 

  2. Kersten JR, Montgomery MW, Pagel PS, Warltier DC. Levosimendan, a new positive inotropic drug, decreases myocardial infarct size via activation of K(ATP) channels. Anesth Analg 2000;90:5–11.

    Article  CAS  PubMed  Google Scholar 

  3. Levijoki J, Pollesello P, Kaheinen P, Haikala H. Improved survival with simendan after experimental myocardial infarction in rats. Eur J Pharmacol 2001;419:243–8.

    Article  CAS  PubMed  Google Scholar 

  4. Rump AF, Acar D, Rosen R, Klaus W. Functional and antiischaemic effects of the phosphodiesterase inhibitor levosimendan in isolated rabbit hearts. Pharmacol Toxicol 1994;74:244–8.

    Article  CAS  PubMed  Google Scholar 

  5. MacGowan GA. The myofilament force–calcium relationship as a target for positive inotropic therapy in congestive heart failure. Cardiovasc Drugs Ther 2005;19:203–10.

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen-Kudsk JE, Aldershvile J. Will calcium sensitizers play a role in the treatment of heart failure? J Cardiovasc Pharmacol 1995;26(Suppl 1):S77–84.

    CAS  PubMed  Google Scholar 

  7. Burger AJ, Horton DP, LeJemtel T, Ghali JK, Torre G, Dennish G, et al. Effect of nesiritide (B-type natriuretic peptide) and dobutamine on ventricular arrhythmias in the treatment of patients with acutely decompensated congestive heart failure: the PRECEDENT study. Am Heart J 2002;144:1102–8.

    Article  CAS  PubMed  Google Scholar 

  8. David S, Zaks JM. Arrhythmias associated with intermittent outpatient dobutamine infusion. Angiology 1986;37:86–91.

    CAS  PubMed  Google Scholar 

  9. Krell MJ, Kline EM, Bates ER, Hodgson JM, Dilworth LR, Laufer N, et al. Intermittent, ambulatory dobutamine infusions in patients with severe congestive heart failure. Am Heart J 1986;112:787–91.

    Article  CAS  PubMed  Google Scholar 

  10. Schulz R, Rose J, Martin C, Brodde OE, Heusch G. Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation 1993;88:684–95.

    CAS  PubMed  Google Scholar 

  11. Lilleberg J, Nieminen MS, Akkila J, Heikkila L, Kuitunen A, Lehtonen L, et al. Effects of a new calcium sensitizer, levosimendan, on haemodynamics, coronary blood flow and myocardial substrate utilization early after coronary artery bypass grafting. Eur Heart J 1998;19:660–8.

    Article  CAS  PubMed  Google Scholar 

  12. Singh BN, Lilleberg J, Sandell EP, Ylonen V, Lehtonen L, Toivonen L. Effects of levosimendan on cardiac arrhythmia: electrophysiological and ambulatory findings in phase II and III clinical studies in cardiac failure. Am J Cardiol 1999;83:16(I)–20(I).

    Google Scholar 

  13. Michaels AD, McKeown B, Kostal M, Vakharia KT, Jordan MV, Gerber IL, et al. Effects of intravenous levosimendan on human coronary vasomotor regulation, left ventricular wall stress, and myocardial oxygen uptake. Circulation 2005;111:1504–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sonntag S, Sundberg S, Lehtonen LA, Kleber FX. The calcium sensitizer levosimendan improves the function of stunned myocardium after percutaneous transluminal coronary angioplasty in acute myocardial ischemia. J Am Coll Cardiol 2004;43:2177–82.

    Article  CAS  PubMed  Google Scholar 

  15. Moiseyev VS, Poder P, Andrejevs N, Ruda MY, Golikov AP, Lazebnik LB, et al. Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSSLAN). Eur Heart J 2002;23:1422–32.

    Article  CAS  PubMed  Google Scholar 

  16. Cleland JG, Ghosh J, Freemantle N, Kaye GC, Nasir M, Clark AL, et al. Clinical trials update and cumulative meta-analyses from the American College of Cardiology: WATCH, SCD-HeFT, DINAMIT, CASINO, INSPIRE, STRATUS-US, RIO-Lipids and cardiac resynchronisation therapy in heart failure. Eur J Heart Fail 2004;6:501–8.

    Article  PubMed  Google Scholar 

  17. Cleland JG, Freemantle N, Coletta AP, Clark AL. Clinical trials update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROACTIVE. Eur J Heart Fail 2006;8:105–10.

    Article  CAS  PubMed  Google Scholar 

  18. Follath F, Cleland JG, Just H, Papp JG, Scholz H, Peuhkurinen K, et al. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet 2002;360:196–202.

    Article  CAS  PubMed  Google Scholar 

  19. Yokoshiki H, Katsube Y, Sunagawa M, Sperelakis N. The novel calcium sensitizer levosimendan activates the ATP-sensitive K+ channel in rat ventricular cells. J Pharmacol Exp Ther 1997;283:375–83.

    CAS  PubMed  Google Scholar 

  20. Ozdem SS, Yalcin O, Meiselman HJ, Baskurt OK, Usta C. The role of potassium channels in relaxant effect of levosimendan in rat small mesenteric arteries. Cardiovasc Drugs Ther 2006.

  21. Yokoshiki H, Sperelakis N. Vasodilating mechanisms of levosimendan. Cardiovasc Drugs Ther 2003;17:111–13.

    Article  CAS  PubMed  Google Scholar 

  22. Gruhn N, Nielsen-Kudsk JE, Theilgaard S, Bang L, Olesen SP, Aldershvile J. Coronary vasorelaxant effect of levosimendan, a new inodilator with calcium-sensitizing properties. J Cardiovasc Pharmacol 1998;31:741–9.

    Article  CAS  PubMed  Google Scholar 

  23. Pataricza J, Krassoi I, Hohn J, Kun A, Papp JG. Functional role of potassium channels in the vasodilating mechanism of levosimendan in porcine isolated coronary artery. Cardiovasc Drugs Ther 2003;17:115–21.

    Article  CAS  PubMed  Google Scholar 

  24. Galie N, Guarnieri C, Ussia GP, Zimarino M., Traini AM, Parlangeli R, et al. Limitation of myocardial infarct size by nicorandil after sustained ischemia in pigs. J Cardiovasc Pharmacol 1995;26:477–84.

    Article  CAS  PubMed  Google Scholar 

  25. Yao Z, Gross GJ. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 1994;89:1769–75.

    CAS  PubMed  Google Scholar 

  26. White FC, Bloor CM. Coronary collateral circulation in the pig: correlation of flow with coronary bed size. Basic Res Cardiol 1981;76:189–96.

    Article  CAS  PubMed  Google Scholar 

  27. Tassani P, Schad H, Heimisch W, Bernhard-Abt A, Ettner U, Mendler N, et al. Effect of the calcium sensitizer levosimendan on the performance of ischaemic myocardium in anaesthetised pigs. Cardiovasc Drugs Ther 2002;16:435–41.

    Article  CAS  PubMed  Google Scholar 

  28. Kristensen J, Mortensen U, Nielsen SS, Maeng M, Nielsen TT, Rehling M. Ischaemic preconditioning in the pig assessed by myocardial perfusion imaging and histochemistry. APMIS Suppl 2003;122–6.

  29. Ravn HB, Moeldrup U, Brookes CI, Ilkjaer LB, White P, Chew M, et al. Intravenous magnesium reduces infarct size after ischemia/reperfusion injury combined with a thrombogenic lesion in the left anterior descending artery. Arterioscler Thromb Vasc Biol 1999;19:569–74.

    CAS  PubMed  Google Scholar 

  30. Kristensen J, Mortensen UM, Nielsen SS, Maeng M, Kaltoft A, Nielsen TT, et al. Myocardial perfusion imaging with 99mTc sestamibi early after reperfusion reliably reflects infarct size reduction by ischaemic preconditioning in an experimental porcine model. Nucl Med Commun 2004;25:495–500.

    Article  PubMed  Google Scholar 

  31. Schwartz LM, Verbinski SG, Vander Heide RS, Reimer KA. Epicardial temperature is a major predictor of myocardial infarct size in dogs. J Mol Cell Cardiol 1997;29:1577–83.

    Article  CAS  PubMed  Google Scholar 

  32. Nieminen MS, Akkila J, Hasenfuss G, Kleber FX, Lehtonen LA, Mitrovic V, et al. Hemodynamic and neurohumoral effects of continuous infusion of levosimendan in patients with congestive heart failure. J Am Coll Cardiol 2000;36:1903–12.

    Article  CAS  PubMed  Google Scholar 

  33. Trines SA, Smits CA, van der MJ, Slager CJ, Verdouw PD, Krams R. Calcium sensitizer EMD 57033, but not the beta1-adrenoreceptor agonist dobutamine, increases mechanical efficiency in stunned myocardium. J Cardiovasc Pharmacol 2002;39:61–72.

    Article  CAS  PubMed  Google Scholar 

  34. Hasenfuss G, Mulieri LA, Allen PD, Just H, Alpert NR. Influence of isoproterenol and ouabain on excitation–contraction coupling, cross-bridge function, and energetics in failing human myocardium. Circulation 1996;94:3155–60.

    CAS  PubMed  Google Scholar 

  35. du Toit EF, Hofmann D, McCarthy J, Pineda C. Effect of levosimendan on myocardial contractility, coronary and peripheral blood flow, and arrhythmias during coronary artery ligation and reperfusion in the in vivo pig model. Heart 2001;86:81–7.

    Article  PubMed  Google Scholar 

  36. Slawsky MT, Colucci WS, Gottlieb SS, Greenberg BH, Haeusslein E, Hare J, et al. Acute hemodynamic and clinical effects of levosimendan in patients with severe heart failure. Study investigators. Circulation 2000;102:2222–7.

    CAS  PubMed  Google Scholar 

  37. Edes I, Kiss E, Kitada Y, Powers FM, Papp JG, Kranias EG, et al. Effects of Levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Circ Res 1995;77:107–13.

    CAS  PubMed  Google Scholar 

  38. Sato S, Talukder MA, Sugawara H, Sawada H, Endoh M. Effects of levosimendan on myocardial contractility and Ca2+ transients in aequorin-loaded right-ventricular papillary muscles and indo-1-loaded single ventricular cardiomyocytes of the rabbit. J Mol Cell Cardiol 1998;30:1115–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Busk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busk, M., Maeng, M., Kristensen, J. et al. Effects of Levosimendan on Myocardial Infarct Size and Hemodynamics in a Closed-Chest Porcine Ischemia–Reperfusion Model. Cardiovasc Drugs Ther 20, 335–342 (2006). https://doi.org/10.1007/s10557-006-0294-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-006-0294-0

Key words

Navigation