Cardiovascular Drugs and Therapy

, Volume 20, Issue 4, pp 245–251 | Cite as

Therapeutic Effectiveness of a Single vs Multiple Doses of Erythropoietin After Experimental Myocardial Infarction in Rats

  • Chanil Moon
  • Melissa Krawczyk
  • Edward G. Lakatta
  • Mark I. Talan
Basic pharmacology – Myocardial Infarction



Systemic application of recombinant human erythropoietin (rhEPO) greatly limits cardiac tissue damage and attenuates left ventricular (LV) remodeling after experimentally induced myocardial infarction (MI). However, multiple injections of rhEPO stimulate red blood cell production and elevate the hematocrit (Htc), which might negatively affect the outcome of acute MI. We compared the outcome of experimental MI in rats treated with a single or multiple doses of rhEPO.

Materials and Methods

Sprague–Dawley male rats were subjected to a permanent ligation of the left descending coronary artery (CL) or sham operation. Immediately after CL animals received either a single i.v. injection of 3,000 IU/kg of rhEPO, or a single injection plus additional injections of the same dose of rhEPO repeated daily for six more days. Echocardiography and blood collection for measurement of Htc were performed prior to, and at 2 and 4 weeks after CL; MI size was measured histologically 4 weeks after CL.


A single injection of rhEPO elevated Htc by 11% (p<0.05) 1 week after CL, but after multiple rhEPO injections Htc increased by 40%. In untreated rats a 140 and 340% expansion in end-diastolic and end-systolic LV volumes, respectively, and 55% decline in ejection fraction (EF) occurred during the 4 week period following CL. A single rhEPO dose attenuated the LV remodeling and EF reduction by 50%. Repeated rhEPO injections did not elicit any additional benefits in respect to LV remodeling. Moreover, at the end of 4 weeks, MI size was significantly reduced (by 40%) by a single injection, while after repeated rhEPO injections the reduction of MI size was not statistically significant.


The results of this study indicate that multiple dosing of rhEPO after induced myocardial infarction in rats has no added therapeutic benefits over those achieved by a single dose.

Key words

myocardial infarction erythropoietin cardiac remodeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Erbayraktar S, Yilmaz O, Gokmen N, Brines M. Erythropoietin is a multifunctional tissue-protective cytokine. Curr Hematol Rep 2003;2:465–70.PubMedGoogle Scholar
  2. 2.
    Coleman T, Brines M. Science review: recombinant human erythropoietin in critical illness: a role beyond anemia? Crit Care 2004 Oct;8:337–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 2002 Aug;8:495–505.PubMedGoogle Scholar
  4. 4.
    Smith KJ, Bleyer AJ, Little WC, Sane DC. The cardiovascular effects of erythropoietin. Cardiovasc Res 2003 Sep 1;59:538–48 (Review).PubMedCrossRefGoogle Scholar
  5. 5.
    Bogoyevitch MA. An update on the cardiac effects of erythropoietin cardioprotection by erythropoietin and the lessons learnt from studies in neuroprotection. Cardiovasc Res 2004 Aug 1;63:208–16 (Review).PubMedCrossRefGoogle Scholar
  6. 6.
    van der Meer P, Voors AA, Lipsic E, van Gilst WH, van Veldhuisen DJ. Erythropoietin in cardiovascular diseases. Eur Heart J 2004 Feb;25:285–91 (Review).PubMedCrossRefGoogle Scholar
  7. 7.
    Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, et al. Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 2000;97:10526–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Moon C, Krawczyk M, Ahn D, Ahmet I, Paik D, Lakatta EG, et al. Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci USA 2003 Sep 30;100:11612–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Moon C, Krawczyk M, Paik D, Lakatta EG, Talan MI. Cardioprotection by recombinant human erythropoietin following acute experimental myocardial infarction: dose response and therapeutic window. Cardiovasc Drugs Ther 2005 Aug;19(4):243–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. JAMA 2005;293:90–5 (Review).PubMedCrossRefGoogle Scholar
  11. 11.
    Genc S, Koroglu TF, Genc K. Erythropoietin as a novel neuroprotectant. Restor Neurol Neurosci 2004;22:105–19.PubMedGoogle Scholar
  12. 12.
    Maiese K, Li F, Chong ZZ. Erythropoietin in the brain: can the promise to protect be fulfilled? Trends Pharmacol Sci 2004;25:577–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Jelkmann W, Wagner K. Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Ann Hematol 2004;83:673–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Lipsic E, van der Meer P, Voors AA, Westenbrink BD, van den Heuvel AF, de Boer HC, et al. A single bolus of a long-acting erythropoietin analogue Darbepoetin alfa in patients with acute myocardial infarction: a randomized feasibility and safety study. Cardiovasc Drugs Ther 2006;20:135–41.PubMedCrossRefGoogle Scholar
  15. 15.
    van der Meer P, Voors AA, Lipsic E, Smilde TD, van Gilst WH, van Veldhuisen DJ. Prognostic value of plasma erythropoietin on mortality in patients with chronic heart failure. J Am Coll Cardiol 2004;44:63–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Henry DH, Bowers P, Romano MT, Provenzano R. Epoetin alfa: clinical evolution of a pleiotropic cytokine. Arch Intern Med 2004;164:262–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Bogar L, Juricskay I, Kesmarky G, Kenyeres P, Toth K. Erythrocyte transport efficacy of human blood: a rheological point of view. Eur J Clin Investig 2005;35:687–90.CrossRefGoogle Scholar
  18. 18.
    Kwaan HC, Wang J. Hyperviscosity in polycythemia vera and other red cell abnormalities. Semin Thromb Hemost 2003;29:451–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Wiessner C, Allegrini PR, Ekatodramis D, Jewell UR, Stallmach T, Gassmann M. Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin. J Cereb Blood Flow Metab 2001;21:857–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Jaquet K, Krause K, Tawakol-Khodai M, Geidel S, Kuck K. Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 2002;64:326–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Squadrito F, Altavilla D, Squadrito G, Campo GM, Arlotta M, Quartarone C, et al. Recombinant human erythropoietin inhibits iNOS activity and reverts vascular dysfunction in splanchnic artery occlusion shock. Br J Pharmacol 1999;127:482–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Shingo T, Sorokan ST, Shimazaki T, Weiss S. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 2001;21:9733–43.PubMedGoogle Scholar
  23. 23.
    Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003 Aug 15;102(4):1340–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Ghezzi P, Brines M. Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ 2004 Jul;11 Suppl 1:S37–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 2004 Jun;113:1535–49.PubMedCrossRefGoogle Scholar
  26. 26.
    Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 1999;19:643–51.PubMedCrossRefGoogle Scholar
  27. 27.
    Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S, et al. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 1998;253:26–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Siren AL, Knerlich F, Poser W, Gleiter CH, Bruck W, Ehrenreich H. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol 2001;101:271–6.PubMedGoogle Scholar
  29. 29.
    Rodriguez M, Schaper J. Apoptosis: measurement and technical issues. J Mol Cell Cardiol 2005;38:15–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhao W, Lu L, Chen SS, Sun Y. Temporal and spatial characteristics of apoptosis in the infarcted rat heart. Biochem Biophys Res Commun 2004;325:605–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Feng QZ, Li TD, Wei LX, Qiao X, Yi J, Wang L, et al. Tempero-spatial dissociation between the expression of Fas and apoptosis after coronary occlusion. Mol Pathol 2003;56:362–7.PubMedCrossRefGoogle Scholar
  32. 32.
    van der Meer, P, Lipsic E, Henning RH, Boddeus K, van der Velden J, Voors AA, et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J Am Coll Cardiol 2005;46:125–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Li L, Takemura G, Li Y, Miysata S, Esaki M, Okada H, et al. Preventive effect of erythropoietin on cardiac dysfunction in doxotubicin-induced cardiomyopathy. Circulation 2006;113:535–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Chanil Moon
    • 1
  • Melissa Krawczyk
    • 1
  • Edward G. Lakatta
    • 1
  • Mark I. Talan
    • 1
    • 2
  1. 1.Laboratory of Cardiovascular Sciences, Gerontology Research CenterNational Institute on AgingBaltimoreUSA
  2. 2.Intramural Research Program, Laboratory of Cardiovascular Sciences, Gerontology Research CenterNational Institute on AgingBaltimoreUSA

Personalised recommendations